Adjoint and Inverse of Matrices
Matrix and Determinant

78817 If \(A=\left(\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right)\) and \(A C=\left(\begin{array}{ll}19 & 24 \\ 37 & 46\end{array}\right)\), then \(C=\)

1 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 2\end{array}\right)\)
2 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 3\end{array}\right)\)
3 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)\)
4 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 5\end{array}\right)\)
Matrix and Determinant

78818 \(A\) and \(B\) are two matrices such that \(A B=B, B A\) \(=A\), then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78820 If \(A, B, C\) are invertible matrices, then \((\mathrm{ABC})^{-1}\) equal to

1 \(\mathrm{A}^{-1} \mathrm{~B}^{-1} \mathrm{C}^{-1}\)
2 \(\mathrm{B}^{-1} \mathrm{C}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{C}^{-1} \mathrm{~A}^{-1} \mathrm{~B}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
Matrix and Determinant

78821 If \(\left[\begin{array}{rr}\cos \frac{2 \pi}{5} & -\sin \frac{2 \pi}{5} \\ \sin \frac{2 \pi}{5} & \cos \frac{2 \pi}{5}\end{array}\right]^{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the least positive integer \(\mathbf{n}\) is equal to

1 2
2 3
3 4
4 5
Matrix and Determinant

78817 If \(A=\left(\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right)\) and \(A C=\left(\begin{array}{ll}19 & 24 \\ 37 & 46\end{array}\right)\), then \(C=\)

1 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 2\end{array}\right)\)
2 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 3\end{array}\right)\)
3 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)\)
4 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 5\end{array}\right)\)
Matrix and Determinant

78818 \(A\) and \(B\) are two matrices such that \(A B=B, B A\) \(=A\), then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78820 If \(A, B, C\) are invertible matrices, then \((\mathrm{ABC})^{-1}\) equal to

1 \(\mathrm{A}^{-1} \mathrm{~B}^{-1} \mathrm{C}^{-1}\)
2 \(\mathrm{B}^{-1} \mathrm{C}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{C}^{-1} \mathrm{~A}^{-1} \mathrm{~B}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
Matrix and Determinant

78821 If \(\left[\begin{array}{rr}\cos \frac{2 \pi}{5} & -\sin \frac{2 \pi}{5} \\ \sin \frac{2 \pi}{5} & \cos \frac{2 \pi}{5}\end{array}\right]^{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the least positive integer \(\mathbf{n}\) is equal to

1 2
2 3
3 4
4 5
Matrix and Determinant

78817 If \(A=\left(\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right)\) and \(A C=\left(\begin{array}{ll}19 & 24 \\ 37 & 46\end{array}\right)\), then \(C=\)

1 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 2\end{array}\right)\)
2 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 3\end{array}\right)\)
3 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)\)
4 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 5\end{array}\right)\)
Matrix and Determinant

78818 \(A\) and \(B\) are two matrices such that \(A B=B, B A\) \(=A\), then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78820 If \(A, B, C\) are invertible matrices, then \((\mathrm{ABC})^{-1}\) equal to

1 \(\mathrm{A}^{-1} \mathrm{~B}^{-1} \mathrm{C}^{-1}\)
2 \(\mathrm{B}^{-1} \mathrm{C}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{C}^{-1} \mathrm{~A}^{-1} \mathrm{~B}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
Matrix and Determinant

78821 If \(\left[\begin{array}{rr}\cos \frac{2 \pi}{5} & -\sin \frac{2 \pi}{5} \\ \sin \frac{2 \pi}{5} & \cos \frac{2 \pi}{5}\end{array}\right]^{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the least positive integer \(\mathbf{n}\) is equal to

1 2
2 3
3 4
4 5
Matrix and Determinant

78817 If \(A=\left(\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right)\) and \(A C=\left(\begin{array}{ll}19 & 24 \\ 37 & 46\end{array}\right)\), then \(C=\)

1 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 2\end{array}\right)\)
2 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 3\end{array}\right)\)
3 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)\)
4 \(\left(\begin{array}{ll}3 & 4 \\ 5 & 5\end{array}\right)\)
Matrix and Determinant

78818 \(A\) and \(B\) are two matrices such that \(A B=B, B A\) \(=A\), then \(A^{2}+B^{2}=\)

1 \(2 \mathrm{AB}\)
2 \(2 \mathrm{BA}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\mathrm{AB}\)
Matrix and Determinant

78820 If \(A, B, C\) are invertible matrices, then \((\mathrm{ABC})^{-1}\) equal to

1 \(\mathrm{A}^{-1} \mathrm{~B}^{-1} \mathrm{C}^{-1}\)
2 \(\mathrm{B}^{-1} \mathrm{C}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{C}^{-1} \mathrm{~A}^{-1} \mathrm{~B}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
Matrix and Determinant

78821 If \(\left[\begin{array}{rr}\cos \frac{2 \pi}{5} & -\sin \frac{2 \pi}{5} \\ \sin \frac{2 \pi}{5} & \cos \frac{2 \pi}{5}\end{array}\right]^{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the least positive integer \(\mathbf{n}\) is equal to

1 2
2 3
3 4
4 5