Adjoint and Inverse of Matrices
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78822 If \(A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(A B\) \(=I_{3}\), then \(x+y\) equals

1 0
2 -1
3 2
4 None of these
Matrix and Determinant

78823 The matrix \(A\) satisfying the equation
\(\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]\) is

1 \(\left[\begin{array}{rr}1 & 4 \\ -1 & 0\end{array}\right.\)
2 \(\left[\begin{array}{rr}1 & -4 \\ 1 & 0\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\)
4 \(\left[\begin{array}{rr}-1 & 4 \\ 1 & 0\end{array}\right]\)
Matrix and Determinant

78824 If \(A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]\) and \(A \cdot \operatorname{Adj} A=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the value of \(k\) is

1 \(\sin \mathrm{x} \cos \mathrm{x} \quad\)
2 1
3 2
4 8
Matrix and Determinant

78826 If \(A=\left[\begin{array}{cc}1 & -2 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]\) and \(C=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\) then \(5 \mathrm{~A}-3 \mathrm{~B}+2 \mathrm{C}\) is equal to

1 \(\left[\begin{array}{cc}8 & 20 \\ 7 & 9\end{array}\right]\)
2 \(\left[\begin{array}{cc}8 & -20 \\ 7 & -9\end{array}\right]\)
3 \(\left[\begin{array}{cc}-8 & 20 \\ -7 & 9\end{array}\right]\)
4 \(\left[\begin{array}{cc}8 & 7 \\ -20 & -9\end{array}\right]\)
Matrix and Determinant

78822 If \(A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(A B\) \(=I_{3}\), then \(x+y\) equals

1 0
2 -1
3 2
4 None of these
Matrix and Determinant

78823 The matrix \(A\) satisfying the equation
\(\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]\) is

1 \(\left[\begin{array}{rr}1 & 4 \\ -1 & 0\end{array}\right.\)
2 \(\left[\begin{array}{rr}1 & -4 \\ 1 & 0\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\)
4 \(\left[\begin{array}{rr}-1 & 4 \\ 1 & 0\end{array}\right]\)
Matrix and Determinant

78824 If \(A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]\) and \(A \cdot \operatorname{Adj} A=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the value of \(k\) is

1 \(\sin \mathrm{x} \cos \mathrm{x} \quad\)
2 1
3 2
4 8
Matrix and Determinant

78826 If \(A=\left[\begin{array}{cc}1 & -2 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]\) and \(C=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\) then \(5 \mathrm{~A}-3 \mathrm{~B}+2 \mathrm{C}\) is equal to

1 \(\left[\begin{array}{cc}8 & 20 \\ 7 & 9\end{array}\right]\)
2 \(\left[\begin{array}{cc}8 & -20 \\ 7 & -9\end{array}\right]\)
3 \(\left[\begin{array}{cc}-8 & 20 \\ -7 & 9\end{array}\right]\)
4 \(\left[\begin{array}{cc}8 & 7 \\ -20 & -9\end{array}\right]\)
Matrix and Determinant

78822 If \(A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(A B\) \(=I_{3}\), then \(x+y\) equals

1 0
2 -1
3 2
4 None of these
Matrix and Determinant

78823 The matrix \(A\) satisfying the equation
\(\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]\) is

1 \(\left[\begin{array}{rr}1 & 4 \\ -1 & 0\end{array}\right.\)
2 \(\left[\begin{array}{rr}1 & -4 \\ 1 & 0\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\)
4 \(\left[\begin{array}{rr}-1 & 4 \\ 1 & 0\end{array}\right]\)
Matrix and Determinant

78824 If \(A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]\) and \(A \cdot \operatorname{Adj} A=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the value of \(k\) is

1 \(\sin \mathrm{x} \cos \mathrm{x} \quad\)
2 1
3 2
4 8
Matrix and Determinant

78826 If \(A=\left[\begin{array}{cc}1 & -2 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]\) and \(C=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\) then \(5 \mathrm{~A}-3 \mathrm{~B}+2 \mathrm{C}\) is equal to

1 \(\left[\begin{array}{cc}8 & 20 \\ 7 & 9\end{array}\right]\)
2 \(\left[\begin{array}{cc}8 & -20 \\ 7 & -9\end{array}\right]\)
3 \(\left[\begin{array}{cc}-8 & 20 \\ -7 & 9\end{array}\right]\)
4 \(\left[\begin{array}{cc}8 & 7 \\ -20 & -9\end{array}\right]\)
Matrix and Determinant

78822 If \(A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(A B\) \(=I_{3}\), then \(x+y\) equals

1 0
2 -1
3 2
4 None of these
Matrix and Determinant

78823 The matrix \(A\) satisfying the equation
\(\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]\) is

1 \(\left[\begin{array}{rr}1 & 4 \\ -1 & 0\end{array}\right.\)
2 \(\left[\begin{array}{rr}1 & -4 \\ 1 & 0\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\)
4 \(\left[\begin{array}{rr}-1 & 4 \\ 1 & 0\end{array}\right]\)
Matrix and Determinant

78824 If \(A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]\) and \(A \cdot \operatorname{Adj} A=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), then the value of \(k\) is

1 \(\sin \mathrm{x} \cos \mathrm{x} \quad\)
2 1
3 2
4 8
Matrix and Determinant

78826 If \(A=\left[\begin{array}{cc}1 & -2 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]\) and \(C=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\) then \(5 \mathrm{~A}-3 \mathrm{~B}+2 \mathrm{C}\) is equal to

1 \(\left[\begin{array}{cc}8 & 20 \\ 7 & 9\end{array}\right]\)
2 \(\left[\begin{array}{cc}8 & -20 \\ 7 & -9\end{array}\right]\)
3 \(\left[\begin{array}{cc}-8 & 20 \\ -7 & 9\end{array}\right]\)
4 \(\left[\begin{array}{cc}8 & 7 \\ -20 & -9\end{array}\right]\)