Adjoint and Inverse of Matrices
Matrix and Determinant

78803 If \(A=\left[\begin{array}{ccc}4 & 3 & 2 \\ -1 & 2 & 0\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & 2 \\ -1 & 0 \\ 1 & -2\end{array}\right]\) then \((\mathbf{A B})^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}-2 & -4 \\ 3 & 3\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{ll}2 & 4 \\ 3 & 3\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-2 & 4 \\ 3 & -3\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}2 & -4 \\ -3 & 3\end{array}\right]\)
Matrix and Determinant

78804 If \(\left[\begin{array}{ccc}1 & -4 & -1 \\ 6 & 3 & 0 \\ 2 & 0 & 0\end{array}\right]\), then \(6\left|A^{-1}\right|=\)

1 3
2 4
3 1
4 2
Matrix and Determinant

78805 If \(A^{-1}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then adj \(A=\)

1 \(\mathrm{A}\)
2 I
3 \(\mathrm{A}^{-1}\)
4 \(2 \mathrm{~A}^{-1}\)
Matrix and Determinant

78806 If \(A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then \(A^{-1}=\)

1 \(\left[\begin{array}{ccc}6 & 1 & 2 \\ -3 & 1 & 2 \\ 5 & 2 & 1\end{array}\right]\)
2 \(\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]\)
3 \(\left[\begin{array}{ccc}3 & 2 & 6 \\ -1 & 1 & 2 \\ -2 & 2 & 5\end{array}\right]\)
4 \(\left[\begin{array}{lll}6 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & 5\end{array}\right]\)
Matrix and Determinant

78803 If \(A=\left[\begin{array}{ccc}4 & 3 & 2 \\ -1 & 2 & 0\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & 2 \\ -1 & 0 \\ 1 & -2\end{array}\right]\) then \((\mathbf{A B})^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}-2 & -4 \\ 3 & 3\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{ll}2 & 4 \\ 3 & 3\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-2 & 4 \\ 3 & -3\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}2 & -4 \\ -3 & 3\end{array}\right]\)
Matrix and Determinant

78804 If \(\left[\begin{array}{ccc}1 & -4 & -1 \\ 6 & 3 & 0 \\ 2 & 0 & 0\end{array}\right]\), then \(6\left|A^{-1}\right|=\)

1 3
2 4
3 1
4 2
Matrix and Determinant

78805 If \(A^{-1}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then adj \(A=\)

1 \(\mathrm{A}\)
2 I
3 \(\mathrm{A}^{-1}\)
4 \(2 \mathrm{~A}^{-1}\)
Matrix and Determinant

78806 If \(A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then \(A^{-1}=\)

1 \(\left[\begin{array}{ccc}6 & 1 & 2 \\ -3 & 1 & 2 \\ 5 & 2 & 1\end{array}\right]\)
2 \(\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]\)
3 \(\left[\begin{array}{ccc}3 & 2 & 6 \\ -1 & 1 & 2 \\ -2 & 2 & 5\end{array}\right]\)
4 \(\left[\begin{array}{lll}6 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & 5\end{array}\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78803 If \(A=\left[\begin{array}{ccc}4 & 3 & 2 \\ -1 & 2 & 0\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & 2 \\ -1 & 0 \\ 1 & -2\end{array}\right]\) then \((\mathbf{A B})^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}-2 & -4 \\ 3 & 3\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{ll}2 & 4 \\ 3 & 3\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-2 & 4 \\ 3 & -3\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}2 & -4 \\ -3 & 3\end{array}\right]\)
Matrix and Determinant

78804 If \(\left[\begin{array}{ccc}1 & -4 & -1 \\ 6 & 3 & 0 \\ 2 & 0 & 0\end{array}\right]\), then \(6\left|A^{-1}\right|=\)

1 3
2 4
3 1
4 2
Matrix and Determinant

78805 If \(A^{-1}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then adj \(A=\)

1 \(\mathrm{A}\)
2 I
3 \(\mathrm{A}^{-1}\)
4 \(2 \mathrm{~A}^{-1}\)
Matrix and Determinant

78806 If \(A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then \(A^{-1}=\)

1 \(\left[\begin{array}{ccc}6 & 1 & 2 \\ -3 & 1 & 2 \\ 5 & 2 & 1\end{array}\right]\)
2 \(\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]\)
3 \(\left[\begin{array}{ccc}3 & 2 & 6 \\ -1 & 1 & 2 \\ -2 & 2 & 5\end{array}\right]\)
4 \(\left[\begin{array}{lll}6 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & 5\end{array}\right]\)
Matrix and Determinant

78803 If \(A=\left[\begin{array}{ccc}4 & 3 & 2 \\ -1 & 2 & 0\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & 2 \\ -1 & 0 \\ 1 & -2\end{array}\right]\) then \((\mathbf{A B})^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}-2 & -4 \\ 3 & 3\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{ll}2 & 4 \\ 3 & 3\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-2 & 4 \\ 3 & -3\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}2 & -4 \\ -3 & 3\end{array}\right]\)
Matrix and Determinant

78804 If \(\left[\begin{array}{ccc}1 & -4 & -1 \\ 6 & 3 & 0 \\ 2 & 0 & 0\end{array}\right]\), then \(6\left|A^{-1}\right|=\)

1 3
2 4
3 1
4 2
Matrix and Determinant

78805 If \(A^{-1}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then adj \(A=\)

1 \(\mathrm{A}\)
2 I
3 \(\mathrm{A}^{-1}\)
4 \(2 \mathrm{~A}^{-1}\)
Matrix and Determinant

78806 If \(A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) then \(A^{-1}=\)

1 \(\left[\begin{array}{ccc}6 & 1 & 2 \\ -3 & 1 & 2 \\ 5 & 2 & 1\end{array}\right]\)
2 \(\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]\)
3 \(\left[\begin{array}{ccc}3 & 2 & 6 \\ -1 & 1 & 2 \\ -2 & 2 & 5\end{array}\right]\)
4 \(\left[\begin{array}{lll}6 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & 5\end{array}\right]\)