Adjoint and Inverse of Matrices
Matrix and Determinant

78798 If ω is a complex cube root of unity and A=[ω00ω], then A1=

1 A
2 2 A
3 A2
4 A
Matrix and Determinant

78799 If A=[1+2iii12i] where i=1 then A (adjA)=

1 2I
2 2I
3 4I
4 5I
Matrix and Determinant

78800 If A is non-singular matrix and (A+I)(AI) =0, then A+A1=

1 I
2 2 A
3 0
4 3I
Matrix and Determinant

78801 If A=[x110] and A=A1, then x=

1 2
2 1
3 4
4 0
Matrix and Determinant

78798 If ω is a complex cube root of unity and A=[ω00ω], then A1=

1 A
2 2 A
3 A2
4 A
Matrix and Determinant

78799 If A=[1+2iii12i] where i=1 then A (adjA)=

1 2I
2 2I
3 4I
4 5I
Matrix and Determinant

78800 If A is non-singular matrix and (A+I)(AI) =0, then A+A1=

1 I
2 2 A
3 0
4 3I
Matrix and Determinant

78801 If A=[x110] and A=A1, then x=

1 2
2 1
3 4
4 0
Matrix and Determinant

78798 If ω is a complex cube root of unity and A=[ω00ω], then A1=

1 A
2 2 A
3 A2
4 A
Matrix and Determinant

78799 If A=[1+2iii12i] where i=1 then A (adjA)=

1 2I
2 2I
3 4I
4 5I
Matrix and Determinant

78800 If A is non-singular matrix and (A+I)(AI) =0, then A+A1=

1 I
2 2 A
3 0
4 3I
Matrix and Determinant

78801 If A=[x110] and A=A1, then x=

1 2
2 1
3 4
4 0
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78798 If ω is a complex cube root of unity and A=[ω00ω], then A1=

1 A
2 2 A
3 A2
4 A
Matrix and Determinant

78799 If A=[1+2iii12i] where i=1 then A (adjA)=

1 2I
2 2I
3 4I
4 5I
Matrix and Determinant

78800 If A is non-singular matrix and (A+I)(AI) =0, then A+A1=

1 I
2 2 A
3 0
4 3I
Matrix and Determinant

78801 If A=[x110] and A=A1, then x=

1 2
2 1
3 4
4 0