78798 If ω is a complex cube root of unity and A=[ω00ω], then A−1=
(C) : Given that,A=[ω00ω]We know that,A−1=adjA|A|Now, |A|=(ω2−0)=ω2And adjA=[ω00ω]A−1=1ω2[ω00ω]A−1=[1ω001ω]=[ω200ω2]A2=[ω00ω][ω00ω]=[ω200ω2]Hence, A−1=A2
78799 If A=[1+2ii−i1−2i] where i=−1 then A (adjA)=
(C) : Given that,A=[1+2ii−i1−2i]Now, adjA=[1−2i−ii1+2i]∴A(adjA)=[1+2ii−i1−2i][1−2i−ii1+2i]A(adjA)=[1−4i2+i2−i−2i2+i+2i2−i+2i2+i−2i2i2+1+4i2]=[1+4−100−1+1+4]=[4004]=4[1001]A(adjA)=4I
78800 If A is non-singular matrix and (A+I)(A−I) =0, then A+A−1=
(B) : According to question, A is non - singular matrix, it means -|A|=0Now, (A+I)(A−I)=0A2−I2=0∵a2−b2=(a+b)(a−b)A2=I2 A⋅A=IA=A−1On adding A on both the side we get -A+A=A−1+AA+A−1=2 A
78801 If A=[x110] and A=A−1, then x=
(D) : Given that,A=[x110]We know that,A−1=adjA|A|Now, |A|=0−1=−1And adjA=[0−1−1x]∴A−1=1| A|adjA=1−1[0−1−1x]=[011−x]According to question,A=A−1[x110]=[011−x]On comparing corresponding elements on both side, we get-x=0