Adjoint and Inverse of Matrices
Matrix and Determinant

78792 If \(A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array}\right]\), then \(\mathbf{A}^{4} \mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1\end{array}\right]\)
2 \(\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right]\)
Matrix and Determinant

78793 If \(\mathbf{A}=\left[\begin{array}{ll}+\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\), then \(\mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}-\sin \theta & -\cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]\)
3 \(\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\)
4 \(\left[\begin{array}{ll}\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta\end{array}\right]\)
Matrix and Determinant

78794 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\), then \((A B)^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & -3 \\ -7 & -11\end{array}\right]\)
4 \(\left[\begin{array}{ll}2 & -3 \\ 7 & 11\end{array}\right]\)
Matrix and Determinant

78796 If the elements of matrix \(A\) are the reciprocals
of elements of matrix \(\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]\), where
\(\omega\) is complex cube root of unity, then

1 \(\mathrm{A}^{-1}=\mathrm{A}^{2}\)
2 \(\mathrm{A}^{-1}=\mathrm{A}\)
3 \(\mathrm{A}^{-1}=\mathrm{I}\)
4 \(\mathrm{A}^{-1}\) does not exists
Matrix and Determinant

78797 If \(A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]\) and \(A^{2}-5 A-6 I=0\), then \(A^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}1 & 5 \\ 2 & -4\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & -4\end{array}\right]\)
Matrix and Determinant

78792 If \(A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array}\right]\), then \(\mathbf{A}^{4} \mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1\end{array}\right]\)
2 \(\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right]\)
Matrix and Determinant

78793 If \(\mathbf{A}=\left[\begin{array}{ll}+\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\), then \(\mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}-\sin \theta & -\cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]\)
3 \(\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\)
4 \(\left[\begin{array}{ll}\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta\end{array}\right]\)
Matrix and Determinant

78794 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\), then \((A B)^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & -3 \\ -7 & -11\end{array}\right]\)
4 \(\left[\begin{array}{ll}2 & -3 \\ 7 & 11\end{array}\right]\)
Matrix and Determinant

78796 If the elements of matrix \(A\) are the reciprocals
of elements of matrix \(\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]\), where
\(\omega\) is complex cube root of unity, then

1 \(\mathrm{A}^{-1}=\mathrm{A}^{2}\)
2 \(\mathrm{A}^{-1}=\mathrm{A}\)
3 \(\mathrm{A}^{-1}=\mathrm{I}\)
4 \(\mathrm{A}^{-1}\) does not exists
Matrix and Determinant

78797 If \(A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]\) and \(A^{2}-5 A-6 I=0\), then \(A^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}1 & 5 \\ 2 & -4\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & -4\end{array}\right]\)
Matrix and Determinant

78792 If \(A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array}\right]\), then \(\mathbf{A}^{4} \mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1\end{array}\right]\)
2 \(\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right]\)
Matrix and Determinant

78793 If \(\mathbf{A}=\left[\begin{array}{ll}+\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\), then \(\mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}-\sin \theta & -\cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]\)
3 \(\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\)
4 \(\left[\begin{array}{ll}\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta\end{array}\right]\)
Matrix and Determinant

78794 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\), then \((A B)^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & -3 \\ -7 & -11\end{array}\right]\)
4 \(\left[\begin{array}{ll}2 & -3 \\ 7 & 11\end{array}\right]\)
Matrix and Determinant

78796 If the elements of matrix \(A\) are the reciprocals
of elements of matrix \(\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]\), where
\(\omega\) is complex cube root of unity, then

1 \(\mathrm{A}^{-1}=\mathrm{A}^{2}\)
2 \(\mathrm{A}^{-1}=\mathrm{A}\)
3 \(\mathrm{A}^{-1}=\mathrm{I}\)
4 \(\mathrm{A}^{-1}\) does not exists
Matrix and Determinant

78797 If \(A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]\) and \(A^{2}-5 A-6 I=0\), then \(A^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}1 & 5 \\ 2 & -4\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & -4\end{array}\right]\)
Matrix and Determinant

78792 If \(A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array}\right]\), then \(\mathbf{A}^{4} \mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1\end{array}\right]\)
2 \(\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right]\)
Matrix and Determinant

78793 If \(\mathbf{A}=\left[\begin{array}{ll}+\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\), then \(\mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}-\sin \theta & -\cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]\)
3 \(\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\)
4 \(\left[\begin{array}{ll}\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta\end{array}\right]\)
Matrix and Determinant

78794 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\), then \((A B)^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & -3 \\ -7 & -11\end{array}\right]\)
4 \(\left[\begin{array}{ll}2 & -3 \\ 7 & 11\end{array}\right]\)
Matrix and Determinant

78796 If the elements of matrix \(A\) are the reciprocals
of elements of matrix \(\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]\), where
\(\omega\) is complex cube root of unity, then

1 \(\mathrm{A}^{-1}=\mathrm{A}^{2}\)
2 \(\mathrm{A}^{-1}=\mathrm{A}\)
3 \(\mathrm{A}^{-1}=\mathrm{I}\)
4 \(\mathrm{A}^{-1}\) does not exists
Matrix and Determinant

78797 If \(A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]\) and \(A^{2}-5 A-6 I=0\), then \(A^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}1 & 5 \\ 2 & -4\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & -4\end{array}\right]\)
Matrix and Determinant

78792 If \(A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array}\right]\), then \(\mathbf{A}^{4} \mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1\end{array}\right]\)
2 \(\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{-1}{2} & 0 \\ 0 & 0 & -1\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{ccc}8 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -1\end{array}\right]\)
Matrix and Determinant

78793 If \(\mathbf{A}=\left[\begin{array}{ll}+\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\), then \(\mathbf{A}^{-1}=\)

1 \(\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\)
2 \(\left[\begin{array}{cc}-\sin \theta & -\cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]\)
3 \(\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]\)
4 \(\left[\begin{array}{ll}\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta\end{array}\right]\)
Matrix and Determinant

78794 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\), then \((A B)^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & -3 \\ -7 & -11\end{array}\right]\)
4 \(\left[\begin{array}{ll}2 & -3 \\ 7 & 11\end{array}\right]\)
Matrix and Determinant

78796 If the elements of matrix \(A\) are the reciprocals
of elements of matrix \(\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]\), where
\(\omega\) is complex cube root of unity, then

1 \(\mathrm{A}^{-1}=\mathrm{A}^{2}\)
2 \(\mathrm{A}^{-1}=\mathrm{A}\)
3 \(\mathrm{A}^{-1}=\mathrm{I}\)
4 \(\mathrm{A}^{-1}\) does not exists
Matrix and Determinant

78797 If \(A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]\) and \(A^{2}-5 A-6 I=0\), then \(A^{-1}=\)

1 \(\frac{1}{6}\left[\begin{array}{cc}1 & 5 \\ 2 & -4\end{array}\right]\)
2 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
3 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]\)
4 \(\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & -4\end{array}\right]\)