78787 If A=[121210],B=[122101], then (AB)−1 is
(C) : Given that,A=[121210] and B=[122101]∴AB=[1+4+02+2+12+2+04+1+0]=[5545](AB)−1=1|AB|[5−5−45]=125−20[5−5−45]=15[5−5−45]
78788 If A=[1112],B=[4131], then (A+B)−1=
(B) : Given that,A=[1112] and B=[4131]A+B=[1112]+[4131]=[5243]|A+B|=15−8=7 and adj(A+B)=[3−2−45]∴(A+B)−1=17[3−2−45]
78789 If AX=B, where A=[1−112−1033−4],B=[112]and X=[xyz], then x+y+z=
(D) : Given thatA=[1−112−1033−4] and B=[112X=B],X=[xyz]On multiplying A−1 both the side, we get -AA−1X=A−1 BIX=A−1 BX=A−1 BNow, |A|=4+(−8)+9=5 ∴A−1=[4−118−729−61]×15∴[xyz]=15[4−118−729−61][112]=15[4−1+28−7+49−6+2]=15[555][xyz]=[111]On comparing both side, we get -x=y=z=1x+y+z=1+1+1=3
78790 If A=[0−10−100], then
(D) : Given that,A=[00−10−10−100]Therefore, |A|=−1(−1)=1And, A−1=[00−10−10−100]=AA−1=A