155610 The amplitude of electric field of a plane electromagnetic wave propagating along $Z$-axis is $4 \mathrm{Vm}^{-\mathrm{P}}$. It varies with time. The average energy density of the magnetic field in $\mathrm{Jm}^{-3}$ is $\left(\varepsilon_{0}=8.854 \times 10^{-12} C^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$
155611 An electromagnetic wave of frequency $1 \times 10^{14}$ $\mathrm{Hz}$ is propagating along $\mathrm{z}$-axis. The amplitude of electric field is $4 \mathrm{Vm}^{-1}$, then energy density of the electric field will be (Permittivity of free space $=8.8 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )
155615
The energies required to set up in a cube of side $10 \mathrm{~cm}$
(i) A uniform electric field of $10^{7} \mathrm{Vm}^{-1}$ and
(ii) A uniform magnetic field if $0.25 \mathrm{Wbm}^{-2}$ are respectively about
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}, \varepsilon_{0}=8.9 \times 10^{-12} \mathrm{Fm}^{-1}\right)$
155610 The amplitude of electric field of a plane electromagnetic wave propagating along $Z$-axis is $4 \mathrm{Vm}^{-\mathrm{P}}$. It varies with time. The average energy density of the magnetic field in $\mathrm{Jm}^{-3}$ is $\left(\varepsilon_{0}=8.854 \times 10^{-12} C^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$
155611 An electromagnetic wave of frequency $1 \times 10^{14}$ $\mathrm{Hz}$ is propagating along $\mathrm{z}$-axis. The amplitude of electric field is $4 \mathrm{Vm}^{-1}$, then energy density of the electric field will be (Permittivity of free space $=8.8 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )
155615
The energies required to set up in a cube of side $10 \mathrm{~cm}$
(i) A uniform electric field of $10^{7} \mathrm{Vm}^{-1}$ and
(ii) A uniform magnetic field if $0.25 \mathrm{Wbm}^{-2}$ are respectively about
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}, \varepsilon_{0}=8.9 \times 10^{-12} \mathrm{Fm}^{-1}\right)$
155610 The amplitude of electric field of a plane electromagnetic wave propagating along $Z$-axis is $4 \mathrm{Vm}^{-\mathrm{P}}$. It varies with time. The average energy density of the magnetic field in $\mathrm{Jm}^{-3}$ is $\left(\varepsilon_{0}=8.854 \times 10^{-12} C^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$
155611 An electromagnetic wave of frequency $1 \times 10^{14}$ $\mathrm{Hz}$ is propagating along $\mathrm{z}$-axis. The amplitude of electric field is $4 \mathrm{Vm}^{-1}$, then energy density of the electric field will be (Permittivity of free space $=8.8 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )
155615
The energies required to set up in a cube of side $10 \mathrm{~cm}$
(i) A uniform electric field of $10^{7} \mathrm{Vm}^{-1}$ and
(ii) A uniform magnetic field if $0.25 \mathrm{Wbm}^{-2}$ are respectively about
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}, \varepsilon_{0}=8.9 \times 10^{-12} \mathrm{Fm}^{-1}\right)$
155610 The amplitude of electric field of a plane electromagnetic wave propagating along $Z$-axis is $4 \mathrm{Vm}^{-\mathrm{P}}$. It varies with time. The average energy density of the magnetic field in $\mathrm{Jm}^{-3}$ is $\left(\varepsilon_{0}=8.854 \times 10^{-12} C^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$
155611 An electromagnetic wave of frequency $1 \times 10^{14}$ $\mathrm{Hz}$ is propagating along $\mathrm{z}$-axis. The amplitude of electric field is $4 \mathrm{Vm}^{-1}$, then energy density of the electric field will be (Permittivity of free space $=8.8 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )
155615
The energies required to set up in a cube of side $10 \mathrm{~cm}$
(i) A uniform electric field of $10^{7} \mathrm{Vm}^{-1}$ and
(ii) A uniform magnetic field if $0.25 \mathrm{Wbm}^{-2}$ are respectively about
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}, \varepsilon_{0}=8.9 \times 10^{-12} \mathrm{Fm}^{-1}\right)$
155610 The amplitude of electric field of a plane electromagnetic wave propagating along $Z$-axis is $4 \mathrm{Vm}^{-\mathrm{P}}$. It varies with time. The average energy density of the magnetic field in $\mathrm{Jm}^{-3}$ is $\left(\varepsilon_{0}=8.854 \times 10^{-12} C^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$
155611 An electromagnetic wave of frequency $1 \times 10^{14}$ $\mathrm{Hz}$ is propagating along $\mathrm{z}$-axis. The amplitude of electric field is $4 \mathrm{Vm}^{-1}$, then energy density of the electric field will be (Permittivity of free space $=8.8 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )
155615
The energies required to set up in a cube of side $10 \mathrm{~cm}$
(i) A uniform electric field of $10^{7} \mathrm{Vm}^{-1}$ and
(ii) A uniform magnetic field if $0.25 \mathrm{Wbm}^{-2}$ are respectively about
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}, \varepsilon_{0}=8.9 \times 10^{-12} \mathrm{Fm}^{-1}\right)$