01. Poynting vector, Energy transported by EM wave, Energy density
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155616 If a charged particle moves in a gravity free space with uniform velocity, then which of the following is not possible
$(\overrightarrow{\mathbf{E}}=\text { electric field, } \overrightarrow{\mathbf{B}}=\text { magnetic field })$

1 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}}=0$
2 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}}=0$
3 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}} \neq 0$
4 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}} \neq 0$
Electromagnetic Wave

155617 A light beam travelling in the $x$-direction is described by the electric field $E_{y}=300 \mathrm{~V} / \mathrm{m}$ $\sin \omega\left(t-\frac{x}{c}\right)$. The maximum magnetic field is:

1 $300 \mathrm{~T}$
2 $3 \times 10^{-6} \mathrm{~T}$
3 $10^{-6} \mathrm{~T}$
4 $100 \mathrm{~T}$
Electromagnetic Wave

155618 The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is

1 $3 \mathrm{~V} / \mathrm{m}$
2 $6 \mathrm{~V} / \mathrm{m}$
3 $9 \mathrm{~V} / \mathrm{m}$
4 $12 \mathrm{~V} / \mathrm{m}$
Electromagnetic Wave

155620 An electromagnetic wave passes through space and its equation is given by $E=E_{0} \sin (\omega t-k x)$ where $E$ is electric field. Energy density of electromagnetic wave in space is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \varepsilon_{0} E_{0}^{2}$
Electromagnetic Wave

155616 If a charged particle moves in a gravity free space with uniform velocity, then which of the following is not possible
$(\overrightarrow{\mathbf{E}}=\text { electric field, } \overrightarrow{\mathbf{B}}=\text { magnetic field })$

1 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}}=0$
2 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}}=0$
3 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}} \neq 0$
4 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}} \neq 0$
Electromagnetic Wave

155617 A light beam travelling in the $x$-direction is described by the electric field $E_{y}=300 \mathrm{~V} / \mathrm{m}$ $\sin \omega\left(t-\frac{x}{c}\right)$. The maximum magnetic field is:

1 $300 \mathrm{~T}$
2 $3 \times 10^{-6} \mathrm{~T}$
3 $10^{-6} \mathrm{~T}$
4 $100 \mathrm{~T}$
Electromagnetic Wave

155618 The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is

1 $3 \mathrm{~V} / \mathrm{m}$
2 $6 \mathrm{~V} / \mathrm{m}$
3 $9 \mathrm{~V} / \mathrm{m}$
4 $12 \mathrm{~V} / \mathrm{m}$
Electromagnetic Wave

155620 An electromagnetic wave passes through space and its equation is given by $E=E_{0} \sin (\omega t-k x)$ where $E$ is electric field. Energy density of electromagnetic wave in space is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \varepsilon_{0} E_{0}^{2}$
Electromagnetic Wave

155616 If a charged particle moves in a gravity free space with uniform velocity, then which of the following is not possible
$(\overrightarrow{\mathbf{E}}=\text { electric field, } \overrightarrow{\mathbf{B}}=\text { magnetic field })$

1 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}}=0$
2 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}}=0$
3 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}} \neq 0$
4 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}} \neq 0$
Electromagnetic Wave

155617 A light beam travelling in the $x$-direction is described by the electric field $E_{y}=300 \mathrm{~V} / \mathrm{m}$ $\sin \omega\left(t-\frac{x}{c}\right)$. The maximum magnetic field is:

1 $300 \mathrm{~T}$
2 $3 \times 10^{-6} \mathrm{~T}$
3 $10^{-6} \mathrm{~T}$
4 $100 \mathrm{~T}$
Electromagnetic Wave

155618 The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is

1 $3 \mathrm{~V} / \mathrm{m}$
2 $6 \mathrm{~V} / \mathrm{m}$
3 $9 \mathrm{~V} / \mathrm{m}$
4 $12 \mathrm{~V} / \mathrm{m}$
Electromagnetic Wave

155620 An electromagnetic wave passes through space and its equation is given by $E=E_{0} \sin (\omega t-k x)$ where $E$ is electric field. Energy density of electromagnetic wave in space is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \varepsilon_{0} E_{0}^{2}$
Electromagnetic Wave

155616 If a charged particle moves in a gravity free space with uniform velocity, then which of the following is not possible
$(\overrightarrow{\mathbf{E}}=\text { electric field, } \overrightarrow{\mathbf{B}}=\text { magnetic field })$

1 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}}=0$
2 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}}=0$
3 $\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}} \neq 0$
4 $\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}} \neq 0$
Electromagnetic Wave

155617 A light beam travelling in the $x$-direction is described by the electric field $E_{y}=300 \mathrm{~V} / \mathrm{m}$ $\sin \omega\left(t-\frac{x}{c}\right)$. The maximum magnetic field is:

1 $300 \mathrm{~T}$
2 $3 \times 10^{-6} \mathrm{~T}$
3 $10^{-6} \mathrm{~T}$
4 $100 \mathrm{~T}$
Electromagnetic Wave

155618 The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is

1 $3 \mathrm{~V} / \mathrm{m}$
2 $6 \mathrm{~V} / \mathrm{m}$
3 $9 \mathrm{~V} / \mathrm{m}$
4 $12 \mathrm{~V} / \mathrm{m}$
Electromagnetic Wave

155620 An electromagnetic wave passes through space and its equation is given by $E=E_{0} \sin (\omega t-k x)$ where $E$ is electric field. Energy density of electromagnetic wave in space is

1 $\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}$
2 $\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}$
3 $\varepsilon_{0} \mathrm{E}_{0}^{2}$
4 $2 \varepsilon_{0} E_{0}^{2}$