04. Power in A.C. Circuit, Wattless Current or Idle Current
Alternating Current

155361 A coil of inductive reactance $31 \Omega$ has a resistance of $8 \Omega$. it is placed in series with a condenser of capacitive reactance $25 \Omega$. The combination is connected to an $\mathrm{AC}$ source of $110 \mathrm{~V}$. The power factor of the circuit is

1 0.56
2 0.64
3 0.80
4 0.33
Alternating Current

155362 Power dissipated in an L-C-R series circuit connected to an $\mathrm{AC}$ source of emf $\varepsilon$ is

1 $\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}$
2 $\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}$
3 $\frac{\varepsilon^{2}\left[\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}\right]}{\mathrm{R}}$
4 $\frac{\varepsilon^{2} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}}}$
Alternating Current

155363 A resistance ' $R$ ' draws power ' $P$ ' when connected to an $\mathrm{AC}$ source. If an inductance is now placed in series with the resistance, such that the impedance of the circuit becomes ' $Z$ ' the power drawn will be

1 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)^{2}$
2 $P \sqrt{\frac{R}{Z}}$
3 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)$
4 $\mathrm{P}$
Alternating Current

155364 An inductor $20 \mathrm{mH}$, a capacitor $50 \mu \mathrm{F}$ and a resistor $40 \Omega$ are connected in series across a source of emf $V=10 \sin 340 t$. The power loss in $\mathrm{AC}$ circuit is

1 $0.67 \mathrm{~W}$
2 $0.76 \mathrm{~W}$
3 $0.89 \mathrm{~W}$
4 $0.51 \mathrm{~W}$
Alternating Current

155366 The power factor of a CR circuit is $\frac{1}{\sqrt{2}}$. If the frequency of ac signal is halved, then the power factor of the circuit becomes

1 $\frac{1}{\sqrt{5}}$
2 $\frac{1}{\sqrt{7}}$
3 $\frac{1}{\sqrt{3}}$
4 $\frac{1}{\sqrt{11}}$
Alternating Current

155361 A coil of inductive reactance $31 \Omega$ has a resistance of $8 \Omega$. it is placed in series with a condenser of capacitive reactance $25 \Omega$. The combination is connected to an $\mathrm{AC}$ source of $110 \mathrm{~V}$. The power factor of the circuit is

1 0.56
2 0.64
3 0.80
4 0.33
Alternating Current

155362 Power dissipated in an L-C-R series circuit connected to an $\mathrm{AC}$ source of emf $\varepsilon$ is

1 $\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}$
2 $\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}$
3 $\frac{\varepsilon^{2}\left[\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}\right]}{\mathrm{R}}$
4 $\frac{\varepsilon^{2} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}}}$
Alternating Current

155363 A resistance ' $R$ ' draws power ' $P$ ' when connected to an $\mathrm{AC}$ source. If an inductance is now placed in series with the resistance, such that the impedance of the circuit becomes ' $Z$ ' the power drawn will be

1 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)^{2}$
2 $P \sqrt{\frac{R}{Z}}$
3 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)$
4 $\mathrm{P}$
Alternating Current

155364 An inductor $20 \mathrm{mH}$, a capacitor $50 \mu \mathrm{F}$ and a resistor $40 \Omega$ are connected in series across a source of emf $V=10 \sin 340 t$. The power loss in $\mathrm{AC}$ circuit is

1 $0.67 \mathrm{~W}$
2 $0.76 \mathrm{~W}$
3 $0.89 \mathrm{~W}$
4 $0.51 \mathrm{~W}$
Alternating Current

155366 The power factor of a CR circuit is $\frac{1}{\sqrt{2}}$. If the frequency of ac signal is halved, then the power factor of the circuit becomes

1 $\frac{1}{\sqrt{5}}$
2 $\frac{1}{\sqrt{7}}$
3 $\frac{1}{\sqrt{3}}$
4 $\frac{1}{\sqrt{11}}$
Alternating Current

155361 A coil of inductive reactance $31 \Omega$ has a resistance of $8 \Omega$. it is placed in series with a condenser of capacitive reactance $25 \Omega$. The combination is connected to an $\mathrm{AC}$ source of $110 \mathrm{~V}$. The power factor of the circuit is

1 0.56
2 0.64
3 0.80
4 0.33
Alternating Current

155362 Power dissipated in an L-C-R series circuit connected to an $\mathrm{AC}$ source of emf $\varepsilon$ is

1 $\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}$
2 $\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}$
3 $\frac{\varepsilon^{2}\left[\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}\right]}{\mathrm{R}}$
4 $\frac{\varepsilon^{2} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}}}$
Alternating Current

155363 A resistance ' $R$ ' draws power ' $P$ ' when connected to an $\mathrm{AC}$ source. If an inductance is now placed in series with the resistance, such that the impedance of the circuit becomes ' $Z$ ' the power drawn will be

1 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)^{2}$
2 $P \sqrt{\frac{R}{Z}}$
3 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)$
4 $\mathrm{P}$
Alternating Current

155364 An inductor $20 \mathrm{mH}$, a capacitor $50 \mu \mathrm{F}$ and a resistor $40 \Omega$ are connected in series across a source of emf $V=10 \sin 340 t$. The power loss in $\mathrm{AC}$ circuit is

1 $0.67 \mathrm{~W}$
2 $0.76 \mathrm{~W}$
3 $0.89 \mathrm{~W}$
4 $0.51 \mathrm{~W}$
Alternating Current

155366 The power factor of a CR circuit is $\frac{1}{\sqrt{2}}$. If the frequency of ac signal is halved, then the power factor of the circuit becomes

1 $\frac{1}{\sqrt{5}}$
2 $\frac{1}{\sqrt{7}}$
3 $\frac{1}{\sqrt{3}}$
4 $\frac{1}{\sqrt{11}}$
Alternating Current

155361 A coil of inductive reactance $31 \Omega$ has a resistance of $8 \Omega$. it is placed in series with a condenser of capacitive reactance $25 \Omega$. The combination is connected to an $\mathrm{AC}$ source of $110 \mathrm{~V}$. The power factor of the circuit is

1 0.56
2 0.64
3 0.80
4 0.33
Alternating Current

155362 Power dissipated in an L-C-R series circuit connected to an $\mathrm{AC}$ source of emf $\varepsilon$ is

1 $\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}$
2 $\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}$
3 $\frac{\varepsilon^{2}\left[\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}\right]}{\mathrm{R}}$
4 $\frac{\varepsilon^{2} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}}}$
Alternating Current

155363 A resistance ' $R$ ' draws power ' $P$ ' when connected to an $\mathrm{AC}$ source. If an inductance is now placed in series with the resistance, such that the impedance of the circuit becomes ' $Z$ ' the power drawn will be

1 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)^{2}$
2 $P \sqrt{\frac{R}{Z}}$
3 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)$
4 $\mathrm{P}$
Alternating Current

155364 An inductor $20 \mathrm{mH}$, a capacitor $50 \mu \mathrm{F}$ and a resistor $40 \Omega$ are connected in series across a source of emf $V=10 \sin 340 t$. The power loss in $\mathrm{AC}$ circuit is

1 $0.67 \mathrm{~W}$
2 $0.76 \mathrm{~W}$
3 $0.89 \mathrm{~W}$
4 $0.51 \mathrm{~W}$
Alternating Current

155366 The power factor of a CR circuit is $\frac{1}{\sqrt{2}}$. If the frequency of ac signal is halved, then the power factor of the circuit becomes

1 $\frac{1}{\sqrt{5}}$
2 $\frac{1}{\sqrt{7}}$
3 $\frac{1}{\sqrt{3}}$
4 $\frac{1}{\sqrt{11}}$
Alternating Current

155361 A coil of inductive reactance $31 \Omega$ has a resistance of $8 \Omega$. it is placed in series with a condenser of capacitive reactance $25 \Omega$. The combination is connected to an $\mathrm{AC}$ source of $110 \mathrm{~V}$. The power factor of the circuit is

1 0.56
2 0.64
3 0.80
4 0.33
Alternating Current

155362 Power dissipated in an L-C-R series circuit connected to an $\mathrm{AC}$ source of emf $\varepsilon$ is

1 $\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}$
2 $\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}$
3 $\frac{\varepsilon^{2}\left[\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}\right]}{\mathrm{R}}$
4 $\frac{\varepsilon^{2} \mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{L} \omega-\frac{1}{\mathrm{C} \omega}\right)^{2}}}$
Alternating Current

155363 A resistance ' $R$ ' draws power ' $P$ ' when connected to an $\mathrm{AC}$ source. If an inductance is now placed in series with the resistance, such that the impedance of the circuit becomes ' $Z$ ' the power drawn will be

1 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)^{2}$
2 $P \sqrt{\frac{R}{Z}}$
3 $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)$
4 $\mathrm{P}$
Alternating Current

155364 An inductor $20 \mathrm{mH}$, a capacitor $50 \mu \mathrm{F}$ and a resistor $40 \Omega$ are connected in series across a source of emf $V=10 \sin 340 t$. The power loss in $\mathrm{AC}$ circuit is

1 $0.67 \mathrm{~W}$
2 $0.76 \mathrm{~W}$
3 $0.89 \mathrm{~W}$
4 $0.51 \mathrm{~W}$
Alternating Current

155366 The power factor of a CR circuit is $\frac{1}{\sqrt{2}}$. If the frequency of ac signal is halved, then the power factor of the circuit becomes

1 $\frac{1}{\sqrt{5}}$
2 $\frac{1}{\sqrt{7}}$
3 $\frac{1}{\sqrt{3}}$
4 $\frac{1}{\sqrt{11}}$