04. Power in A.C. Circuit, Wattless Current or Idle Current
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155355 The power factor of an A.C. circuit having resistance $R$ and inductance $L$ connected in series to an A.C. source of angular frequency $\omega$ is

1 Zero
2 $\omega \mathrm{L} / \mathrm{R}$
3 $\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}}}$
4 $\mathrm{R} / \omega \mathrm{L}$
Alternating Current

155356 The power factor of a series L-C-R circuit when at resonance is

1 zero
2 0.5
3 1.0
4 depends on values of L,C and R
Alternating Current

155358 In an $A C$ circuit $V$ and $I$ are given below, then find the power dissipated in the circuit $V=\mathbf{5 0}$ $\sin (50 t)$ volt and $I=50 \sin \left(50 t+\frac{\pi}{3}\right) \mathrm{mA}$

1 $0.625 \mathrm{~W}$
2 $1.25 \mathrm{~W}$
3 $2.50 \mathrm{~W}$
4 $5.0 \mathrm{~W}$
Alternating Current

155359 In an $\mathrm{AC}$ circuit the emf (V) and the current (i) at any instant are given respectively by
$V=V_{0} \sin \omega t, i=i_{0} \sin (\omega t-\phi)$
The average power in the circuit over one cycle of $\mathrm{AC}$ is

1 $\frac{V_{0} i_{0}}{2}$
2 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \sin \phi$
3 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \cos \phi$
4 $\mathrm{V}_{0} \mathrm{i}_{0}$
Alternating Current

155355 The power factor of an A.C. circuit having resistance $R$ and inductance $L$ connected in series to an A.C. source of angular frequency $\omega$ is

1 Zero
2 $\omega \mathrm{L} / \mathrm{R}$
3 $\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}}}$
4 $\mathrm{R} / \omega \mathrm{L}$
Alternating Current

155356 The power factor of a series L-C-R circuit when at resonance is

1 zero
2 0.5
3 1.0
4 depends on values of L,C and R
Alternating Current

155358 In an $A C$ circuit $V$ and $I$ are given below, then find the power dissipated in the circuit $V=\mathbf{5 0}$ $\sin (50 t)$ volt and $I=50 \sin \left(50 t+\frac{\pi}{3}\right) \mathrm{mA}$

1 $0.625 \mathrm{~W}$
2 $1.25 \mathrm{~W}$
3 $2.50 \mathrm{~W}$
4 $5.0 \mathrm{~W}$
Alternating Current

155359 In an $\mathrm{AC}$ circuit the emf (V) and the current (i) at any instant are given respectively by
$V=V_{0} \sin \omega t, i=i_{0} \sin (\omega t-\phi)$
The average power in the circuit over one cycle of $\mathrm{AC}$ is

1 $\frac{V_{0} i_{0}}{2}$
2 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \sin \phi$
3 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \cos \phi$
4 $\mathrm{V}_{0} \mathrm{i}_{0}$
Alternating Current

155355 The power factor of an A.C. circuit having resistance $R$ and inductance $L$ connected in series to an A.C. source of angular frequency $\omega$ is

1 Zero
2 $\omega \mathrm{L} / \mathrm{R}$
3 $\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}}}$
4 $\mathrm{R} / \omega \mathrm{L}$
Alternating Current

155356 The power factor of a series L-C-R circuit when at resonance is

1 zero
2 0.5
3 1.0
4 depends on values of L,C and R
Alternating Current

155358 In an $A C$ circuit $V$ and $I$ are given below, then find the power dissipated in the circuit $V=\mathbf{5 0}$ $\sin (50 t)$ volt and $I=50 \sin \left(50 t+\frac{\pi}{3}\right) \mathrm{mA}$

1 $0.625 \mathrm{~W}$
2 $1.25 \mathrm{~W}$
3 $2.50 \mathrm{~W}$
4 $5.0 \mathrm{~W}$
Alternating Current

155359 In an $\mathrm{AC}$ circuit the emf (V) and the current (i) at any instant are given respectively by
$V=V_{0} \sin \omega t, i=i_{0} \sin (\omega t-\phi)$
The average power in the circuit over one cycle of $\mathrm{AC}$ is

1 $\frac{V_{0} i_{0}}{2}$
2 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \sin \phi$
3 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \cos \phi$
4 $\mathrm{V}_{0} \mathrm{i}_{0}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155355 The power factor of an A.C. circuit having resistance $R$ and inductance $L$ connected in series to an A.C. source of angular frequency $\omega$ is

1 Zero
2 $\omega \mathrm{L} / \mathrm{R}$
3 $\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}}}$
4 $\mathrm{R} / \omega \mathrm{L}$
Alternating Current

155356 The power factor of a series L-C-R circuit when at resonance is

1 zero
2 0.5
3 1.0
4 depends on values of L,C and R
Alternating Current

155358 In an $A C$ circuit $V$ and $I$ are given below, then find the power dissipated in the circuit $V=\mathbf{5 0}$ $\sin (50 t)$ volt and $I=50 \sin \left(50 t+\frac{\pi}{3}\right) \mathrm{mA}$

1 $0.625 \mathrm{~W}$
2 $1.25 \mathrm{~W}$
3 $2.50 \mathrm{~W}$
4 $5.0 \mathrm{~W}$
Alternating Current

155359 In an $\mathrm{AC}$ circuit the emf (V) and the current (i) at any instant are given respectively by
$V=V_{0} \sin \omega t, i=i_{0} \sin (\omega t-\phi)$
The average power in the circuit over one cycle of $\mathrm{AC}$ is

1 $\frac{V_{0} i_{0}}{2}$
2 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \sin \phi$
3 $\frac{\mathrm{V}_{0} \mathrm{i}_{0}}{2} \cos \phi$
4 $\mathrm{V}_{0} \mathrm{i}_{0}$