02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155259 IN an L-C-R circuit, if impedance is $\sqrt{3}$ times of resistance and capacitive reactance is zero. Find the phase difference.

1 Zero
2 $30^{\circ}$
3 $60^{\circ}$
4 data is incomplete
Alternating Current

155260 A resistor $R$, and inductor $L$ and a capacitor $C$ are connected in series to a source of frequency $n$. If the resonant frequency is $n_{r}$, then the current lags behind voltage when :

1 $\mathrm{n}=0$
2 n $ \lt \mathrm{n}_{\mathrm{r}}$
3 $\mathrm{n}=\mathrm{n}_{\mathrm{r}}$
4 $n>n_{r}$
Alternating Current

155261 For a series LCR circuit, the rms values of voltage across various components are $V_{L}=90 \mathrm{~V}, V_{C}=60 \mathrm{~V}$ and $V_{R}=40 \mathrm{~V}$ Volt, The rms value of the voltage applied to the circuit is :

1 $190 \mathrm{~V}$
2 $110 \mathrm{~V}$
3 $70 \mathrm{~V}$
4 $50 \mathrm{~V}$
Alternating Current

155262 In a series $L-C-R$ circuit, resistance $R=10 \Omega$ and the impedance $Z=10 \Omega$. The phase difference between the current and the voltage is

1 $0^{\circ}$
2 $30^{\circ}$
3 $45^{\circ}$
4 $60^{\circ}$
Alternating Current

155259 IN an L-C-R circuit, if impedance is $\sqrt{3}$ times of resistance and capacitive reactance is zero. Find the phase difference.

1 Zero
2 $30^{\circ}$
3 $60^{\circ}$
4 data is incomplete
Alternating Current

155260 A resistor $R$, and inductor $L$ and a capacitor $C$ are connected in series to a source of frequency $n$. If the resonant frequency is $n_{r}$, then the current lags behind voltage when :

1 $\mathrm{n}=0$
2 n $ \lt \mathrm{n}_{\mathrm{r}}$
3 $\mathrm{n}=\mathrm{n}_{\mathrm{r}}$
4 $n>n_{r}$
Alternating Current

155261 For a series LCR circuit, the rms values of voltage across various components are $V_{L}=90 \mathrm{~V}, V_{C}=60 \mathrm{~V}$ and $V_{R}=40 \mathrm{~V}$ Volt, The rms value of the voltage applied to the circuit is :

1 $190 \mathrm{~V}$
2 $110 \mathrm{~V}$
3 $70 \mathrm{~V}$
4 $50 \mathrm{~V}$
Alternating Current

155262 In a series $L-C-R$ circuit, resistance $R=10 \Omega$ and the impedance $Z=10 \Omega$. The phase difference between the current and the voltage is

1 $0^{\circ}$
2 $30^{\circ}$
3 $45^{\circ}$
4 $60^{\circ}$
Alternating Current

155259 IN an L-C-R circuit, if impedance is $\sqrt{3}$ times of resistance and capacitive reactance is zero. Find the phase difference.

1 Zero
2 $30^{\circ}$
3 $60^{\circ}$
4 data is incomplete
Alternating Current

155260 A resistor $R$, and inductor $L$ and a capacitor $C$ are connected in series to a source of frequency $n$. If the resonant frequency is $n_{r}$, then the current lags behind voltage when :

1 $\mathrm{n}=0$
2 n $ \lt \mathrm{n}_{\mathrm{r}}$
3 $\mathrm{n}=\mathrm{n}_{\mathrm{r}}$
4 $n>n_{r}$
Alternating Current

155261 For a series LCR circuit, the rms values of voltage across various components are $V_{L}=90 \mathrm{~V}, V_{C}=60 \mathrm{~V}$ and $V_{R}=40 \mathrm{~V}$ Volt, The rms value of the voltage applied to the circuit is :

1 $190 \mathrm{~V}$
2 $110 \mathrm{~V}$
3 $70 \mathrm{~V}$
4 $50 \mathrm{~V}$
Alternating Current

155262 In a series $L-C-R$ circuit, resistance $R=10 \Omega$ and the impedance $Z=10 \Omega$. The phase difference between the current and the voltage is

1 $0^{\circ}$
2 $30^{\circ}$
3 $45^{\circ}$
4 $60^{\circ}$
Alternating Current

155259 IN an L-C-R circuit, if impedance is $\sqrt{3}$ times of resistance and capacitive reactance is zero. Find the phase difference.

1 Zero
2 $30^{\circ}$
3 $60^{\circ}$
4 data is incomplete
Alternating Current

155260 A resistor $R$, and inductor $L$ and a capacitor $C$ are connected in series to a source of frequency $n$. If the resonant frequency is $n_{r}$, then the current lags behind voltage when :

1 $\mathrm{n}=0$
2 n $ \lt \mathrm{n}_{\mathrm{r}}$
3 $\mathrm{n}=\mathrm{n}_{\mathrm{r}}$
4 $n>n_{r}$
Alternating Current

155261 For a series LCR circuit, the rms values of voltage across various components are $V_{L}=90 \mathrm{~V}, V_{C}=60 \mathrm{~V}$ and $V_{R}=40 \mathrm{~V}$ Volt, The rms value of the voltage applied to the circuit is :

1 $190 \mathrm{~V}$
2 $110 \mathrm{~V}$
3 $70 \mathrm{~V}$
4 $50 \mathrm{~V}$
Alternating Current

155262 In a series $L-C-R$ circuit, resistance $R=10 \Omega$ and the impedance $Z=10 \Omega$. The phase difference between the current and the voltage is

1 $0^{\circ}$
2 $30^{\circ}$
3 $45^{\circ}$
4 $60^{\circ}$