02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155250 The average power dissipated in a pure capacitance $A . C$ circuit is

1 $\mathrm{CV}$
2 zero
3 $\frac{1}{2} \mathrm{CV}^{2}$
4 $\frac{1}{4} \mathrm{CV}^{2}$
Alternating Current

155251 The natural frequency $\left(\omega_{0}\right)$ of oscillations in LC-circuit is given by

1 $\frac{1}{2 \pi} \frac{1}{\sqrt{\mathrm{LC}}}$
2 $\frac{1}{2 \pi} \sqrt{\mathrm{LC}}$
3 $\frac{1}{\sqrt{\mathrm{LC}}}$
4 $\sqrt{\mathrm{LC}}$
Alternating Current

155255 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=500 \mu F$ and $R=160 \Omega$ is

1 $\frac{100}{2 \pi}$
2 $\frac{400}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155258 A $100 \mathrm{~V}$, AC source of frequency $500 \mathrm{~Hz}$ is connected to an $L C R$ circuit with $L=8.1 \mathrm{mH}$, $C=12.5 \mu F, R=10 \Omega$ all connected in series as shown in figure. What is the quality factor of circuit?

1 2.02
2 2.5434
3 20.54
4 200.54
Alternating Current

155250 The average power dissipated in a pure capacitance $A . C$ circuit is

1 $\mathrm{CV}$
2 zero
3 $\frac{1}{2} \mathrm{CV}^{2}$
4 $\frac{1}{4} \mathrm{CV}^{2}$
Alternating Current

155251 The natural frequency $\left(\omega_{0}\right)$ of oscillations in LC-circuit is given by

1 $\frac{1}{2 \pi} \frac{1}{\sqrt{\mathrm{LC}}}$
2 $\frac{1}{2 \pi} \sqrt{\mathrm{LC}}$
3 $\frac{1}{\sqrt{\mathrm{LC}}}$
4 $\sqrt{\mathrm{LC}}$
Alternating Current

155255 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=500 \mu F$ and $R=160 \Omega$ is

1 $\frac{100}{2 \pi}$
2 $\frac{400}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155258 A $100 \mathrm{~V}$, AC source of frequency $500 \mathrm{~Hz}$ is connected to an $L C R$ circuit with $L=8.1 \mathrm{mH}$, $C=12.5 \mu F, R=10 \Omega$ all connected in series as shown in figure. What is the quality factor of circuit?

1 2.02
2 2.5434
3 20.54
4 200.54
Alternating Current

155250 The average power dissipated in a pure capacitance $A . C$ circuit is

1 $\mathrm{CV}$
2 zero
3 $\frac{1}{2} \mathrm{CV}^{2}$
4 $\frac{1}{4} \mathrm{CV}^{2}$
Alternating Current

155251 The natural frequency $\left(\omega_{0}\right)$ of oscillations in LC-circuit is given by

1 $\frac{1}{2 \pi} \frac{1}{\sqrt{\mathrm{LC}}}$
2 $\frac{1}{2 \pi} \sqrt{\mathrm{LC}}$
3 $\frac{1}{\sqrt{\mathrm{LC}}}$
4 $\sqrt{\mathrm{LC}}$
Alternating Current

155255 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=500 \mu F$ and $R=160 \Omega$ is

1 $\frac{100}{2 \pi}$
2 $\frac{400}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155258 A $100 \mathrm{~V}$, AC source of frequency $500 \mathrm{~Hz}$ is connected to an $L C R$ circuit with $L=8.1 \mathrm{mH}$, $C=12.5 \mu F, R=10 \Omega$ all connected in series as shown in figure. What is the quality factor of circuit?

1 2.02
2 2.5434
3 20.54
4 200.54
Alternating Current

155250 The average power dissipated in a pure capacitance $A . C$ circuit is

1 $\mathrm{CV}$
2 zero
3 $\frac{1}{2} \mathrm{CV}^{2}$
4 $\frac{1}{4} \mathrm{CV}^{2}$
Alternating Current

155251 The natural frequency $\left(\omega_{0}\right)$ of oscillations in LC-circuit is given by

1 $\frac{1}{2 \pi} \frac{1}{\sqrt{\mathrm{LC}}}$
2 $\frac{1}{2 \pi} \sqrt{\mathrm{LC}}$
3 $\frac{1}{\sqrt{\mathrm{LC}}}$
4 $\sqrt{\mathrm{LC}}$
Alternating Current

155255 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=500 \mu F$ and $R=160 \Omega$ is

1 $\frac{100}{2 \pi}$
2 $\frac{400}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155258 A $100 \mathrm{~V}$, AC source of frequency $500 \mathrm{~Hz}$ is connected to an $L C R$ circuit with $L=8.1 \mathrm{mH}$, $C=12.5 \mu F, R=10 \Omega$ all connected in series as shown in figure. What is the quality factor of circuit?

1 2.02
2 2.5434
3 20.54
4 200.54