02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155245 The value of alternating emf $E$ in the given circuit will be :

1 $220 \mathrm{~V}$
2 $140 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $20 \mathrm{~V}$
Alternating Current

155246 In a LCR circuit the potential difference between the terminals of the inductance is 60 $\mathrm{V}$, between the terminals of the capacitor is 30 $V$ and that between the terminals of resistance is $40 \mathrm{~V}$. The supply voltage will be equal to :

1 $130 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $50 \mathrm{~V}$
4 $70 \mathrm{~V}$
Alternating Current

155247 In the circuit shown in the figure, the A.C source gives a voltage $V=20 \cos (2000t)$. Neglecting source resistance, the voltmeter and ammeter reading will be :

1 $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
2 $0 \mathrm{~V}, 0.47 \mathrm{~A}$
3 $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
4 $0 \mathrm{~V}, 1.4 \mathrm{~A}$
Alternating Current

155248 In the circuit shown in the figure, neglecting source resistance, the voltmeter and ammeter readings will respectively be :

1 $150 \mathrm{~V}, 8 \mathrm{~A}$
2 $0 \mathrm{~V}, 8 \mathrm{~A}$
3 $0 \mathrm{~V}, 3 \mathrm{~A}$
4 $150 \mathrm{~V}, 3 \mathrm{~A}$
Alternating Current

155249 An LCR series circuit is under resonance. If $I_{m}$ is current amplitude, $V_{m}$ is voltage amplitude, $R$ is the resistance, $Z$ is the impedance, $X_{L}$ is the inductive reactance and $X_{C}$ is the capacitive reactance then,

1 $I_{m}=\frac{V_{m}}{Z}$
2 $I_{m}=\frac{V_{m}}{X_{L}}$
3 $I_{m}=\frac{V_{m}}{X_{C}}$
4 $I_{m}=\frac{V_{m}}{R}$
Alternating Current

155245 The value of alternating emf $E$ in the given circuit will be :

1 $220 \mathrm{~V}$
2 $140 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $20 \mathrm{~V}$
Alternating Current

155246 In a LCR circuit the potential difference between the terminals of the inductance is 60 $\mathrm{V}$, between the terminals of the capacitor is 30 $V$ and that between the terminals of resistance is $40 \mathrm{~V}$. The supply voltage will be equal to :

1 $130 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $50 \mathrm{~V}$
4 $70 \mathrm{~V}$
Alternating Current

155247 In the circuit shown in the figure, the A.C source gives a voltage $V=20 \cos (2000t)$. Neglecting source resistance, the voltmeter and ammeter reading will be :

1 $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
2 $0 \mathrm{~V}, 0.47 \mathrm{~A}$
3 $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
4 $0 \mathrm{~V}, 1.4 \mathrm{~A}$
Alternating Current

155248 In the circuit shown in the figure, neglecting source resistance, the voltmeter and ammeter readings will respectively be :

1 $150 \mathrm{~V}, 8 \mathrm{~A}$
2 $0 \mathrm{~V}, 8 \mathrm{~A}$
3 $0 \mathrm{~V}, 3 \mathrm{~A}$
4 $150 \mathrm{~V}, 3 \mathrm{~A}$
Alternating Current

155249 An LCR series circuit is under resonance. If $I_{m}$ is current amplitude, $V_{m}$ is voltage amplitude, $R$ is the resistance, $Z$ is the impedance, $X_{L}$ is the inductive reactance and $X_{C}$ is the capacitive reactance then,

1 $I_{m}=\frac{V_{m}}{Z}$
2 $I_{m}=\frac{V_{m}}{X_{L}}$
3 $I_{m}=\frac{V_{m}}{X_{C}}$
4 $I_{m}=\frac{V_{m}}{R}$
Alternating Current

155245 The value of alternating emf $E$ in the given circuit will be :

1 $220 \mathrm{~V}$
2 $140 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $20 \mathrm{~V}$
Alternating Current

155246 In a LCR circuit the potential difference between the terminals of the inductance is 60 $\mathrm{V}$, between the terminals of the capacitor is 30 $V$ and that between the terminals of resistance is $40 \mathrm{~V}$. The supply voltage will be equal to :

1 $130 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $50 \mathrm{~V}$
4 $70 \mathrm{~V}$
Alternating Current

155247 In the circuit shown in the figure, the A.C source gives a voltage $V=20 \cos (2000t)$. Neglecting source resistance, the voltmeter and ammeter reading will be :

1 $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
2 $0 \mathrm{~V}, 0.47 \mathrm{~A}$
3 $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
4 $0 \mathrm{~V}, 1.4 \mathrm{~A}$
Alternating Current

155248 In the circuit shown in the figure, neglecting source resistance, the voltmeter and ammeter readings will respectively be :

1 $150 \mathrm{~V}, 8 \mathrm{~A}$
2 $0 \mathrm{~V}, 8 \mathrm{~A}$
3 $0 \mathrm{~V}, 3 \mathrm{~A}$
4 $150 \mathrm{~V}, 3 \mathrm{~A}$
Alternating Current

155249 An LCR series circuit is under resonance. If $I_{m}$ is current amplitude, $V_{m}$ is voltage amplitude, $R$ is the resistance, $Z$ is the impedance, $X_{L}$ is the inductive reactance and $X_{C}$ is the capacitive reactance then,

1 $I_{m}=\frac{V_{m}}{Z}$
2 $I_{m}=\frac{V_{m}}{X_{L}}$
3 $I_{m}=\frac{V_{m}}{X_{C}}$
4 $I_{m}=\frac{V_{m}}{R}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155245 The value of alternating emf $E$ in the given circuit will be :

1 $220 \mathrm{~V}$
2 $140 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $20 \mathrm{~V}$
Alternating Current

155246 In a LCR circuit the potential difference between the terminals of the inductance is 60 $\mathrm{V}$, between the terminals of the capacitor is 30 $V$ and that between the terminals of resistance is $40 \mathrm{~V}$. The supply voltage will be equal to :

1 $130 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $50 \mathrm{~V}$
4 $70 \mathrm{~V}$
Alternating Current

155247 In the circuit shown in the figure, the A.C source gives a voltage $V=20 \cos (2000t)$. Neglecting source resistance, the voltmeter and ammeter reading will be :

1 $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
2 $0 \mathrm{~V}, 0.47 \mathrm{~A}$
3 $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
4 $0 \mathrm{~V}, 1.4 \mathrm{~A}$
Alternating Current

155248 In the circuit shown in the figure, neglecting source resistance, the voltmeter and ammeter readings will respectively be :

1 $150 \mathrm{~V}, 8 \mathrm{~A}$
2 $0 \mathrm{~V}, 8 \mathrm{~A}$
3 $0 \mathrm{~V}, 3 \mathrm{~A}$
4 $150 \mathrm{~V}, 3 \mathrm{~A}$
Alternating Current

155249 An LCR series circuit is under resonance. If $I_{m}$ is current amplitude, $V_{m}$ is voltage amplitude, $R$ is the resistance, $Z$ is the impedance, $X_{L}$ is the inductive reactance and $X_{C}$ is the capacitive reactance then,

1 $I_{m}=\frac{V_{m}}{Z}$
2 $I_{m}=\frac{V_{m}}{X_{L}}$
3 $I_{m}=\frac{V_{m}}{X_{C}}$
4 $I_{m}=\frac{V_{m}}{R}$
Alternating Current

155245 The value of alternating emf $E$ in the given circuit will be :

1 $220 \mathrm{~V}$
2 $140 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $20 \mathrm{~V}$
Alternating Current

155246 In a LCR circuit the potential difference between the terminals of the inductance is 60 $\mathrm{V}$, between the terminals of the capacitor is 30 $V$ and that between the terminals of resistance is $40 \mathrm{~V}$. The supply voltage will be equal to :

1 $130 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $50 \mathrm{~V}$
4 $70 \mathrm{~V}$
Alternating Current

155247 In the circuit shown in the figure, the A.C source gives a voltage $V=20 \cos (2000t)$. Neglecting source resistance, the voltmeter and ammeter reading will be :

1 $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
2 $0 \mathrm{~V}, 0.47 \mathrm{~A}$
3 $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
4 $0 \mathrm{~V}, 1.4 \mathrm{~A}$
Alternating Current

155248 In the circuit shown in the figure, neglecting source resistance, the voltmeter and ammeter readings will respectively be :

1 $150 \mathrm{~V}, 8 \mathrm{~A}$
2 $0 \mathrm{~V}, 8 \mathrm{~A}$
3 $0 \mathrm{~V}, 3 \mathrm{~A}$
4 $150 \mathrm{~V}, 3 \mathrm{~A}$
Alternating Current

155249 An LCR series circuit is under resonance. If $I_{m}$ is current amplitude, $V_{m}$ is voltage amplitude, $R$ is the resistance, $Z$ is the impedance, $X_{L}$ is the inductive reactance and $X_{C}$ is the capacitive reactance then,

1 $I_{m}=\frac{V_{m}}{Z}$
2 $I_{m}=\frac{V_{m}}{X_{L}}$
3 $I_{m}=\frac{V_{m}}{X_{C}}$
4 $I_{m}=\frac{V_{m}}{R}$