02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155241 In a series L-C-R circuit, the potential drop across $L, C$ and $R$ respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$ and $60 \mathrm{~V}$. Then, the source voltage is :

1 $220 \mathrm{~V}$
2 $160 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $100 \mathrm{~V}$
Alternating Current

155242 A series LCR circuit contains inductance $5 \mathrm{mH}$, capacitance $2 \mu \mathrm{F}$ and resistance $10 \Omega$. If a frequency $\mathrm{AC}$ source is varied, what is the frequency at which maximum power is dissipated?

1 $\frac{10^{5}}{\pi} \mathrm{Hz}$
2 $\frac{10^{-5}}{\pi} \mathrm{Hz}$
3 $\frac{2}{\pi} \times 10^{5} \mathrm{~Hz}$
4 $\frac{5}{\pi} \times 10^{3} \mathrm{~Hz}$
Alternating Current

155243 In the series L-C-R circuit shown, the impedance is :

1 $200 \Omega$
2 $100 \Omega$
3 $300 \Omega$
4 $500 \Omega$
Alternating Current

155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is:

1 $100 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $400 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155241 In a series L-C-R circuit, the potential drop across $L, C$ and $R$ respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$ and $60 \mathrm{~V}$. Then, the source voltage is :

1 $220 \mathrm{~V}$
2 $160 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $100 \mathrm{~V}$
Alternating Current

155242 A series LCR circuit contains inductance $5 \mathrm{mH}$, capacitance $2 \mu \mathrm{F}$ and resistance $10 \Omega$. If a frequency $\mathrm{AC}$ source is varied, what is the frequency at which maximum power is dissipated?

1 $\frac{10^{5}}{\pi} \mathrm{Hz}$
2 $\frac{10^{-5}}{\pi} \mathrm{Hz}$
3 $\frac{2}{\pi} \times 10^{5} \mathrm{~Hz}$
4 $\frac{5}{\pi} \times 10^{3} \mathrm{~Hz}$
Alternating Current

155243 In the series L-C-R circuit shown, the impedance is :

1 $200 \Omega$
2 $100 \Omega$
3 $300 \Omega$
4 $500 \Omega$
Alternating Current

155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is:

1 $100 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $400 \mathrm{~V}$
Alternating Current

155241 In a series L-C-R circuit, the potential drop across $L, C$ and $R$ respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$ and $60 \mathrm{~V}$. Then, the source voltage is :

1 $220 \mathrm{~V}$
2 $160 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $100 \mathrm{~V}$
Alternating Current

155242 A series LCR circuit contains inductance $5 \mathrm{mH}$, capacitance $2 \mu \mathrm{F}$ and resistance $10 \Omega$. If a frequency $\mathrm{AC}$ source is varied, what is the frequency at which maximum power is dissipated?

1 $\frac{10^{5}}{\pi} \mathrm{Hz}$
2 $\frac{10^{-5}}{\pi} \mathrm{Hz}$
3 $\frac{2}{\pi} \times 10^{5} \mathrm{~Hz}$
4 $\frac{5}{\pi} \times 10^{3} \mathrm{~Hz}$
Alternating Current

155243 In the series L-C-R circuit shown, the impedance is :

1 $200 \Omega$
2 $100 \Omega$
3 $300 \Omega$
4 $500 \Omega$
Alternating Current

155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is:

1 $100 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $400 \mathrm{~V}$
Alternating Current

155241 In a series L-C-R circuit, the potential drop across $L, C$ and $R$ respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$ and $60 \mathrm{~V}$. Then, the source voltage is :

1 $220 \mathrm{~V}$
2 $160 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $100 \mathrm{~V}$
Alternating Current

155242 A series LCR circuit contains inductance $5 \mathrm{mH}$, capacitance $2 \mu \mathrm{F}$ and resistance $10 \Omega$. If a frequency $\mathrm{AC}$ source is varied, what is the frequency at which maximum power is dissipated?

1 $\frac{10^{5}}{\pi} \mathrm{Hz}$
2 $\frac{10^{-5}}{\pi} \mathrm{Hz}$
3 $\frac{2}{\pi} \times 10^{5} \mathrm{~Hz}$
4 $\frac{5}{\pi} \times 10^{3} \mathrm{~Hz}$
Alternating Current

155243 In the series L-C-R circuit shown, the impedance is :

1 $200 \Omega$
2 $100 \Omega$
3 $300 \Omega$
4 $500 \Omega$
Alternating Current

155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is:

1 $100 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $400 \mathrm{~V}$