155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is:
155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is:
155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is:
155244 In a series resonant $R-L-C$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and the value of $R=1000 \Omega$. The capacitance of the capacitor is $2 \times 10^{-6} \mathrm{~F}$; angular frequency of $\mathrm{AC}$ is $200 \mathrm{rad} \mathrm{s}^{-1}$. Then the potential difference across the inductance coil is: