02. A.C. Circuit (L-C-R, LC Circuit)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155195 A resistance $R$ and inductance $L$ and a capacitor $\mathrm{C}$ all are connected in series with an AC supply. The resistance of $R$ is $16 \mathrm{ohm}$ and for a given frequency, the inductive reactance of $L$ is $24 \mathrm{ohm}$ and capacitive reactance of $C$ is $12 \mathrm{ohm}$. If the current in the circuit is $5 \mathrm{amp}$., find the potential difference across $R, L$ and $C$.

1 $30,20,50$ volt
2 40, 100, 60 volt
3 70, 110,60 volt
4 80, 120,60 volt
Alternating Current

155196 In the circuit shown below, the ac source has voltage $V=20 \cos (\omega t)$ volt with $\omega=2000$ $\mathrm{rad} / \mathrm{s}$. The amplitude of the current will be nearest to

Alternating Current

1 $2 \mathrm{~A}$
2 $3.3 \mathrm{~A}$
3 $2 / \sqrt{5} \mathrm{~A}$
4 $\sqrt{5} \mathrm{~A}$
Alternating Current

155197 A resistor of resistance $R$, capacitor of capacitance $C$ and inductor of inductance $L$ are connected in parallel to $\mathrm{AC}$ power source of voltage $\varepsilon_{0}$ sin $\omega t$. The maximum current through the resistance is half of the maximum current through the power source. Then value of $R$ is

1 $\frac{\sqrt{3}}{\left|\omega \mathrm{C}-\frac{1}{\omega \mathrm{L}}\right|}$
2 $\sqrt{3}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
3 $\sqrt{5}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
4 None of these
Alternating Current

155198 In a series resonant $L-C-R$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$ with $C=2 \mu \mathrm{F}$. The resonant frequency $\omega$ is $200 \mathrm{rads}^{-1}$. At resonance the voltage across $L$ is

1 $2.5 \times 10^{-2} \mathrm{~V}$
2 $4 \times 10^{-8} \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $4 \times 10^{-3} \mathrm{~V}$
Alternating Current

155195 A resistance $R$ and inductance $L$ and a capacitor $\mathrm{C}$ all are connected in series with an AC supply. The resistance of $R$ is $16 \mathrm{ohm}$ and for a given frequency, the inductive reactance of $L$ is $24 \mathrm{ohm}$ and capacitive reactance of $C$ is $12 \mathrm{ohm}$. If the current in the circuit is $5 \mathrm{amp}$., find the potential difference across $R, L$ and $C$.

1 $30,20,50$ volt
2 40, 100, 60 volt
3 70, 110,60 volt
4 80, 120,60 volt
Alternating Current

155196 In the circuit shown below, the ac source has voltage $V=20 \cos (\omega t)$ volt with $\omega=2000$ $\mathrm{rad} / \mathrm{s}$. The amplitude of the current will be nearest to

Alternating Current

1 $2 \mathrm{~A}$
2 $3.3 \mathrm{~A}$
3 $2 / \sqrt{5} \mathrm{~A}$
4 $\sqrt{5} \mathrm{~A}$
Alternating Current

155197 A resistor of resistance $R$, capacitor of capacitance $C$ and inductor of inductance $L$ are connected in parallel to $\mathrm{AC}$ power source of voltage $\varepsilon_{0}$ sin $\omega t$. The maximum current through the resistance is half of the maximum current through the power source. Then value of $R$ is

1 $\frac{\sqrt{3}}{\left|\omega \mathrm{C}-\frac{1}{\omega \mathrm{L}}\right|}$
2 $\sqrt{3}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
3 $\sqrt{5}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
4 None of these
Alternating Current

155198 In a series resonant $L-C-R$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$ with $C=2 \mu \mathrm{F}$. The resonant frequency $\omega$ is $200 \mathrm{rads}^{-1}$. At resonance the voltage across $L$ is

1 $2.5 \times 10^{-2} \mathrm{~V}$
2 $4 \times 10^{-8} \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $4 \times 10^{-3} \mathrm{~V}$
Alternating Current

155195 A resistance $R$ and inductance $L$ and a capacitor $\mathrm{C}$ all are connected in series with an AC supply. The resistance of $R$ is $16 \mathrm{ohm}$ and for a given frequency, the inductive reactance of $L$ is $24 \mathrm{ohm}$ and capacitive reactance of $C$ is $12 \mathrm{ohm}$. If the current in the circuit is $5 \mathrm{amp}$., find the potential difference across $R, L$ and $C$.

1 $30,20,50$ volt
2 40, 100, 60 volt
3 70, 110,60 volt
4 80, 120,60 volt
Alternating Current

155196 In the circuit shown below, the ac source has voltage $V=20 \cos (\omega t)$ volt with $\omega=2000$ $\mathrm{rad} / \mathrm{s}$. The amplitude of the current will be nearest to

Alternating Current

1 $2 \mathrm{~A}$
2 $3.3 \mathrm{~A}$
3 $2 / \sqrt{5} \mathrm{~A}$
4 $\sqrt{5} \mathrm{~A}$
Alternating Current

155197 A resistor of resistance $R$, capacitor of capacitance $C$ and inductor of inductance $L$ are connected in parallel to $\mathrm{AC}$ power source of voltage $\varepsilon_{0}$ sin $\omega t$. The maximum current through the resistance is half of the maximum current through the power source. Then value of $R$ is

1 $\frac{\sqrt{3}}{\left|\omega \mathrm{C}-\frac{1}{\omega \mathrm{L}}\right|}$
2 $\sqrt{3}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
3 $\sqrt{5}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
4 None of these
Alternating Current

155198 In a series resonant $L-C-R$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$ with $C=2 \mu \mathrm{F}$. The resonant frequency $\omega$ is $200 \mathrm{rads}^{-1}$. At resonance the voltage across $L$ is

1 $2.5 \times 10^{-2} \mathrm{~V}$
2 $4 \times 10^{-8} \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $4 \times 10^{-3} \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155195 A resistance $R$ and inductance $L$ and a capacitor $\mathrm{C}$ all are connected in series with an AC supply. The resistance of $R$ is $16 \mathrm{ohm}$ and for a given frequency, the inductive reactance of $L$ is $24 \mathrm{ohm}$ and capacitive reactance of $C$ is $12 \mathrm{ohm}$. If the current in the circuit is $5 \mathrm{amp}$., find the potential difference across $R, L$ and $C$.

1 $30,20,50$ volt
2 40, 100, 60 volt
3 70, 110,60 volt
4 80, 120,60 volt
Alternating Current

155196 In the circuit shown below, the ac source has voltage $V=20 \cos (\omega t)$ volt with $\omega=2000$ $\mathrm{rad} / \mathrm{s}$. The amplitude of the current will be nearest to

Alternating Current

1 $2 \mathrm{~A}$
2 $3.3 \mathrm{~A}$
3 $2 / \sqrt{5} \mathrm{~A}$
4 $\sqrt{5} \mathrm{~A}$
Alternating Current

155197 A resistor of resistance $R$, capacitor of capacitance $C$ and inductor of inductance $L$ are connected in parallel to $\mathrm{AC}$ power source of voltage $\varepsilon_{0}$ sin $\omega t$. The maximum current through the resistance is half of the maximum current through the power source. Then value of $R$ is

1 $\frac{\sqrt{3}}{\left|\omega \mathrm{C}-\frac{1}{\omega \mathrm{L}}\right|}$
2 $\sqrt{3}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
3 $\sqrt{5}\left|\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right|$
4 None of these
Alternating Current

155198 In a series resonant $L-C-R$ circuit, the voltage across $R$ is $100 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$ with $C=2 \mu \mathrm{F}$. The resonant frequency $\omega$ is $200 \mathrm{rads}^{-1}$. At resonance the voltage across $L$ is

1 $2.5 \times 10^{-2} \mathrm{~V}$
2 $4 \times 10^{-8} \mathrm{~V}$
3 $250 \mathrm{~V}$
4 $4 \times 10^{-3} \mathrm{~V}$