02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155190 In a circuit $L, C$ and $R$ are connected in series with an alternating voltage source of frequency f. The current leads the voltage by $45^{\circ}$. The value of $C$ is

1 $\frac{1}{2 \pi f(2 \pi f L+R)}$
2 $\frac{1}{\pi f(2 \pi f L+R)}$
3 $\frac{1}{2 \pi f(2 \pi f L-R)}$
4 $\frac{1}{\pi \mathrm{f}(2 \pi \mathrm{fL}-\mathrm{R})}$
Alternating Current

155191 In series $L R$ circuit $X_{L}=3 R$, now a capacitor with $X_{C}=R$ is added in series. The ratio of new to old power factor is

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Alternating Current

155192 If $\mathrm{L}, \mathrm{C}, \mathrm{R}$ are respectively the inductance, capacitance and resistance, the quantities of dimensions same as of frequency are

1 $\frac{1}{\sqrt{\mathrm{LC}}}, \frac{\mathrm{R}}{\mathrm{L}}$ and $\frac{1}{\mathrm{RC}}$
2 $\sqrt{\mathrm{LC}}, \frac{\mathrm{L}}{\mathrm{R}}$ and $\mathrm{RC}$
3 $\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}, \mathrm{LR}$ and $\frac{\mathrm{C}}{\mathrm{R}}$
4 $\sqrt{\frac{\mathrm{C}}{\mathrm{L}}}, \frac{1}{\mathrm{LR}}$ and $\frac{\mathrm{R}}{\mathrm{C}}$
Alternating Current

155193 $L-C-R$ circuit $V_{L}=V_{C}=V_{R}=10 V$ if $C$ is short circuited then voltage across $\mathrm{L}$ will be

1 $10 / \sqrt{2} \mathrm{~V}$
2 $20 \sqrt{2} \mathrm{~V}$
3 $10 \sqrt{2} \mathrm{~V}$
4 $10 \mathrm{~V}$
Alternating Current

155194 The impedance of an $\mathrm{AC}$ circuit containing a capacitive reactance of $5 \Omega$ and inductive reactance of $8 \Omega$ will be

1 $1.6 \Omega$
2 $40 \Omega$
3 $3 \Omega$
4 $13 \Omega$
Alternating Current

155190 In a circuit $L, C$ and $R$ are connected in series with an alternating voltage source of frequency f. The current leads the voltage by $45^{\circ}$. The value of $C$ is

1 $\frac{1}{2 \pi f(2 \pi f L+R)}$
2 $\frac{1}{\pi f(2 \pi f L+R)}$
3 $\frac{1}{2 \pi f(2 \pi f L-R)}$
4 $\frac{1}{\pi \mathrm{f}(2 \pi \mathrm{fL}-\mathrm{R})}$
Alternating Current

155191 In series $L R$ circuit $X_{L}=3 R$, now a capacitor with $X_{C}=R$ is added in series. The ratio of new to old power factor is

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Alternating Current

155192 If $\mathrm{L}, \mathrm{C}, \mathrm{R}$ are respectively the inductance, capacitance and resistance, the quantities of dimensions same as of frequency are

1 $\frac{1}{\sqrt{\mathrm{LC}}}, \frac{\mathrm{R}}{\mathrm{L}}$ and $\frac{1}{\mathrm{RC}}$
2 $\sqrt{\mathrm{LC}}, \frac{\mathrm{L}}{\mathrm{R}}$ and $\mathrm{RC}$
3 $\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}, \mathrm{LR}$ and $\frac{\mathrm{C}}{\mathrm{R}}$
4 $\sqrt{\frac{\mathrm{C}}{\mathrm{L}}}, \frac{1}{\mathrm{LR}}$ and $\frac{\mathrm{R}}{\mathrm{C}}$
Alternating Current

155193 $L-C-R$ circuit $V_{L}=V_{C}=V_{R}=10 V$ if $C$ is short circuited then voltage across $\mathrm{L}$ will be

1 $10 / \sqrt{2} \mathrm{~V}$
2 $20 \sqrt{2} \mathrm{~V}$
3 $10 \sqrt{2} \mathrm{~V}$
4 $10 \mathrm{~V}$
Alternating Current

155194 The impedance of an $\mathrm{AC}$ circuit containing a capacitive reactance of $5 \Omega$ and inductive reactance of $8 \Omega$ will be

1 $1.6 \Omega$
2 $40 \Omega$
3 $3 \Omega$
4 $13 \Omega$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155190 In a circuit $L, C$ and $R$ are connected in series with an alternating voltage source of frequency f. The current leads the voltage by $45^{\circ}$. The value of $C$ is

1 $\frac{1}{2 \pi f(2 \pi f L+R)}$
2 $\frac{1}{\pi f(2 \pi f L+R)}$
3 $\frac{1}{2 \pi f(2 \pi f L-R)}$
4 $\frac{1}{\pi \mathrm{f}(2 \pi \mathrm{fL}-\mathrm{R})}$
Alternating Current

155191 In series $L R$ circuit $X_{L}=3 R$, now a capacitor with $X_{C}=R$ is added in series. The ratio of new to old power factor is

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Alternating Current

155192 If $\mathrm{L}, \mathrm{C}, \mathrm{R}$ are respectively the inductance, capacitance and resistance, the quantities of dimensions same as of frequency are

1 $\frac{1}{\sqrt{\mathrm{LC}}}, \frac{\mathrm{R}}{\mathrm{L}}$ and $\frac{1}{\mathrm{RC}}$
2 $\sqrt{\mathrm{LC}}, \frac{\mathrm{L}}{\mathrm{R}}$ and $\mathrm{RC}$
3 $\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}, \mathrm{LR}$ and $\frac{\mathrm{C}}{\mathrm{R}}$
4 $\sqrt{\frac{\mathrm{C}}{\mathrm{L}}}, \frac{1}{\mathrm{LR}}$ and $\frac{\mathrm{R}}{\mathrm{C}}$
Alternating Current

155193 $L-C-R$ circuit $V_{L}=V_{C}=V_{R}=10 V$ if $C$ is short circuited then voltage across $\mathrm{L}$ will be

1 $10 / \sqrt{2} \mathrm{~V}$
2 $20 \sqrt{2} \mathrm{~V}$
3 $10 \sqrt{2} \mathrm{~V}$
4 $10 \mathrm{~V}$
Alternating Current

155194 The impedance of an $\mathrm{AC}$ circuit containing a capacitive reactance of $5 \Omega$ and inductive reactance of $8 \Omega$ will be

1 $1.6 \Omega$
2 $40 \Omega$
3 $3 \Omega$
4 $13 \Omega$
Alternating Current

155190 In a circuit $L, C$ and $R$ are connected in series with an alternating voltage source of frequency f. The current leads the voltage by $45^{\circ}$. The value of $C$ is

1 $\frac{1}{2 \pi f(2 \pi f L+R)}$
2 $\frac{1}{\pi f(2 \pi f L+R)}$
3 $\frac{1}{2 \pi f(2 \pi f L-R)}$
4 $\frac{1}{\pi \mathrm{f}(2 \pi \mathrm{fL}-\mathrm{R})}$
Alternating Current

155191 In series $L R$ circuit $X_{L}=3 R$, now a capacitor with $X_{C}=R$ is added in series. The ratio of new to old power factor is

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Alternating Current

155192 If $\mathrm{L}, \mathrm{C}, \mathrm{R}$ are respectively the inductance, capacitance and resistance, the quantities of dimensions same as of frequency are

1 $\frac{1}{\sqrt{\mathrm{LC}}}, \frac{\mathrm{R}}{\mathrm{L}}$ and $\frac{1}{\mathrm{RC}}$
2 $\sqrt{\mathrm{LC}}, \frac{\mathrm{L}}{\mathrm{R}}$ and $\mathrm{RC}$
3 $\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}, \mathrm{LR}$ and $\frac{\mathrm{C}}{\mathrm{R}}$
4 $\sqrt{\frac{\mathrm{C}}{\mathrm{L}}}, \frac{1}{\mathrm{LR}}$ and $\frac{\mathrm{R}}{\mathrm{C}}$
Alternating Current

155193 $L-C-R$ circuit $V_{L}=V_{C}=V_{R}=10 V$ if $C$ is short circuited then voltage across $\mathrm{L}$ will be

1 $10 / \sqrt{2} \mathrm{~V}$
2 $20 \sqrt{2} \mathrm{~V}$
3 $10 \sqrt{2} \mathrm{~V}$
4 $10 \mathrm{~V}$
Alternating Current

155194 The impedance of an $\mathrm{AC}$ circuit containing a capacitive reactance of $5 \Omega$ and inductive reactance of $8 \Omega$ will be

1 $1.6 \Omega$
2 $40 \Omega$
3 $3 \Omega$
4 $13 \Omega$
Alternating Current

155190 In a circuit $L, C$ and $R$ are connected in series with an alternating voltage source of frequency f. The current leads the voltage by $45^{\circ}$. The value of $C$ is

1 $\frac{1}{2 \pi f(2 \pi f L+R)}$
2 $\frac{1}{\pi f(2 \pi f L+R)}$
3 $\frac{1}{2 \pi f(2 \pi f L-R)}$
4 $\frac{1}{\pi \mathrm{f}(2 \pi \mathrm{fL}-\mathrm{R})}$
Alternating Current

155191 In series $L R$ circuit $X_{L}=3 R$, now a capacitor with $X_{C}=R$ is added in series. The ratio of new to old power factor is

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Alternating Current

155192 If $\mathrm{L}, \mathrm{C}, \mathrm{R}$ are respectively the inductance, capacitance and resistance, the quantities of dimensions same as of frequency are

1 $\frac{1}{\sqrt{\mathrm{LC}}}, \frac{\mathrm{R}}{\mathrm{L}}$ and $\frac{1}{\mathrm{RC}}$
2 $\sqrt{\mathrm{LC}}, \frac{\mathrm{L}}{\mathrm{R}}$ and $\mathrm{RC}$
3 $\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}, \mathrm{LR}$ and $\frac{\mathrm{C}}{\mathrm{R}}$
4 $\sqrt{\frac{\mathrm{C}}{\mathrm{L}}}, \frac{1}{\mathrm{LR}}$ and $\frac{\mathrm{R}}{\mathrm{C}}$
Alternating Current

155193 $L-C-R$ circuit $V_{L}=V_{C}=V_{R}=10 V$ if $C$ is short circuited then voltage across $\mathrm{L}$ will be

1 $10 / \sqrt{2} \mathrm{~V}$
2 $20 \sqrt{2} \mathrm{~V}$
3 $10 \sqrt{2} \mathrm{~V}$
4 $10 \mathrm{~V}$
Alternating Current

155194 The impedance of an $\mathrm{AC}$ circuit containing a capacitive reactance of $5 \Omega$ and inductive reactance of $8 \Omega$ will be

1 $1.6 \Omega$
2 $40 \Omega$
3 $3 \Omega$
4 $13 \Omega$