01. A.C. Voltage Applied to Inductance & Capacitor
Alternating Current

155059 Two inductors each of inductance $L$ are connected in parallel. One more inductor of value $5 \mathrm{mH}$ is connected in series of this configuration then the effective inductance is $15 \mathrm{mH}$. The value of $\mathrm{L}$ is mH.

1 10
2 5.0
3 2.5
4 20
Alternating Current

155062 A $30 \mu \mathrm{F}$ capacitor is connected to a $150 \mathrm{~V}, 60$ $\mathrm{Hz}$ AC supply the rms value of current is the circuit is

1 $17 \mathrm{~A}$
2 $1.7 \mathrm{~A}$
3 $1.7 \mathrm{~mA}$
4 $1.7 \mu \mathrm{A}$
Alternating Current

155063 An oscillator circuit contains an inductor 0.05 $H$ and a capacitor of capacity $80 \mu \mathrm{F}$. When the maximum voltage across the capacitor is $200 \mathrm{~V}$, the maximum current (in amperes) in the circuit is

1 2
2 4
3 8
4 10
5 16
Alternating Current

155064 A coil of inductive reactance $1 / \sqrt{3} \Omega$ and resistance $1 \Omega$ is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. The time lag between maximum voltage and current is :

1 $\frac{1}{200} \mathrm{~s}$
2 $\frac{1}{300} \mathrm{~s}$
3 $\frac{1}{500} \mathrm{~s}$
4 $\frac{1}{600} \mathrm{~s}$
Alternating Current

155066 A L-R circuit consists of an inductance of $8 \mathrm{mH}$ and a resistance of $4 \Omega$. The time constant of the circuit is

1 $2 \mathrm{~ms}$
2 $12 \mathrm{~ms}$
3 $32 \mathrm{~ms}$
4 $500 \mathrm{~s}$
Alternating Current

155059 Two inductors each of inductance $L$ are connected in parallel. One more inductor of value $5 \mathrm{mH}$ is connected in series of this configuration then the effective inductance is $15 \mathrm{mH}$. The value of $\mathrm{L}$ is mH.

1 10
2 5.0
3 2.5
4 20
Alternating Current

155062 A $30 \mu \mathrm{F}$ capacitor is connected to a $150 \mathrm{~V}, 60$ $\mathrm{Hz}$ AC supply the rms value of current is the circuit is

1 $17 \mathrm{~A}$
2 $1.7 \mathrm{~A}$
3 $1.7 \mathrm{~mA}$
4 $1.7 \mu \mathrm{A}$
Alternating Current

155063 An oscillator circuit contains an inductor 0.05 $H$ and a capacitor of capacity $80 \mu \mathrm{F}$. When the maximum voltage across the capacitor is $200 \mathrm{~V}$, the maximum current (in amperes) in the circuit is

1 2
2 4
3 8
4 10
5 16
Alternating Current

155064 A coil of inductive reactance $1 / \sqrt{3} \Omega$ and resistance $1 \Omega$ is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. The time lag between maximum voltage and current is :

1 $\frac{1}{200} \mathrm{~s}$
2 $\frac{1}{300} \mathrm{~s}$
3 $\frac{1}{500} \mathrm{~s}$
4 $\frac{1}{600} \mathrm{~s}$
Alternating Current

155066 A L-R circuit consists of an inductance of $8 \mathrm{mH}$ and a resistance of $4 \Omega$. The time constant of the circuit is

1 $2 \mathrm{~ms}$
2 $12 \mathrm{~ms}$
3 $32 \mathrm{~ms}$
4 $500 \mathrm{~s}$
Alternating Current

155059 Two inductors each of inductance $L$ are connected in parallel. One more inductor of value $5 \mathrm{mH}$ is connected in series of this configuration then the effective inductance is $15 \mathrm{mH}$. The value of $\mathrm{L}$ is mH.

1 10
2 5.0
3 2.5
4 20
Alternating Current

155062 A $30 \mu \mathrm{F}$ capacitor is connected to a $150 \mathrm{~V}, 60$ $\mathrm{Hz}$ AC supply the rms value of current is the circuit is

1 $17 \mathrm{~A}$
2 $1.7 \mathrm{~A}$
3 $1.7 \mathrm{~mA}$
4 $1.7 \mu \mathrm{A}$
Alternating Current

155063 An oscillator circuit contains an inductor 0.05 $H$ and a capacitor of capacity $80 \mu \mathrm{F}$. When the maximum voltage across the capacitor is $200 \mathrm{~V}$, the maximum current (in amperes) in the circuit is

1 2
2 4
3 8
4 10
5 16
Alternating Current

155064 A coil of inductive reactance $1 / \sqrt{3} \Omega$ and resistance $1 \Omega$ is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. The time lag between maximum voltage and current is :

1 $\frac{1}{200} \mathrm{~s}$
2 $\frac{1}{300} \mathrm{~s}$
3 $\frac{1}{500} \mathrm{~s}$
4 $\frac{1}{600} \mathrm{~s}$
Alternating Current

155066 A L-R circuit consists of an inductance of $8 \mathrm{mH}$ and a resistance of $4 \Omega$. The time constant of the circuit is

1 $2 \mathrm{~ms}$
2 $12 \mathrm{~ms}$
3 $32 \mathrm{~ms}$
4 $500 \mathrm{~s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155059 Two inductors each of inductance $L$ are connected in parallel. One more inductor of value $5 \mathrm{mH}$ is connected in series of this configuration then the effective inductance is $15 \mathrm{mH}$. The value of $\mathrm{L}$ is mH.

1 10
2 5.0
3 2.5
4 20
Alternating Current

155062 A $30 \mu \mathrm{F}$ capacitor is connected to a $150 \mathrm{~V}, 60$ $\mathrm{Hz}$ AC supply the rms value of current is the circuit is

1 $17 \mathrm{~A}$
2 $1.7 \mathrm{~A}$
3 $1.7 \mathrm{~mA}$
4 $1.7 \mu \mathrm{A}$
Alternating Current

155063 An oscillator circuit contains an inductor 0.05 $H$ and a capacitor of capacity $80 \mu \mathrm{F}$. When the maximum voltage across the capacitor is $200 \mathrm{~V}$, the maximum current (in amperes) in the circuit is

1 2
2 4
3 8
4 10
5 16
Alternating Current

155064 A coil of inductive reactance $1 / \sqrt{3} \Omega$ and resistance $1 \Omega$ is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. The time lag between maximum voltage and current is :

1 $\frac{1}{200} \mathrm{~s}$
2 $\frac{1}{300} \mathrm{~s}$
3 $\frac{1}{500} \mathrm{~s}$
4 $\frac{1}{600} \mathrm{~s}$
Alternating Current

155066 A L-R circuit consists of an inductance of $8 \mathrm{mH}$ and a resistance of $4 \Omega$. The time constant of the circuit is

1 $2 \mathrm{~ms}$
2 $12 \mathrm{~ms}$
3 $32 \mathrm{~ms}$
4 $500 \mathrm{~s}$
Alternating Current

155059 Two inductors each of inductance $L$ are connected in parallel. One more inductor of value $5 \mathrm{mH}$ is connected in series of this configuration then the effective inductance is $15 \mathrm{mH}$. The value of $\mathrm{L}$ is mH.

1 10
2 5.0
3 2.5
4 20
Alternating Current

155062 A $30 \mu \mathrm{F}$ capacitor is connected to a $150 \mathrm{~V}, 60$ $\mathrm{Hz}$ AC supply the rms value of current is the circuit is

1 $17 \mathrm{~A}$
2 $1.7 \mathrm{~A}$
3 $1.7 \mathrm{~mA}$
4 $1.7 \mu \mathrm{A}$
Alternating Current

155063 An oscillator circuit contains an inductor 0.05 $H$ and a capacitor of capacity $80 \mu \mathrm{F}$. When the maximum voltage across the capacitor is $200 \mathrm{~V}$, the maximum current (in amperes) in the circuit is

1 2
2 4
3 8
4 10
5 16
Alternating Current

155064 A coil of inductive reactance $1 / \sqrt{3} \Omega$ and resistance $1 \Omega$ is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. The time lag between maximum voltage and current is :

1 $\frac{1}{200} \mathrm{~s}$
2 $\frac{1}{300} \mathrm{~s}$
3 $\frac{1}{500} \mathrm{~s}$
4 $\frac{1}{600} \mathrm{~s}$
Alternating Current

155066 A L-R circuit consists of an inductance of $8 \mathrm{mH}$ and a resistance of $4 \Omega$. The time constant of the circuit is

1 $2 \mathrm{~ms}$
2 $12 \mathrm{~ms}$
3 $32 \mathrm{~ms}$
4 $500 \mathrm{~s}$