01. A.C. Voltage Applied to Inductance & Capacitor
Alternating Current

155026 Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then

1 $\mathrm{M}=\mathrm{L}_{1} / \mathrm{L}_{2}$
2 $\mathrm{M}=\mathrm{L}_{1} \mathrm{~L}_{2}$
3 $\mathrm{M}=\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
4 $\mathrm{M}=\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right)^{2}$
Alternating Current

155033 An inductor of $200 \mu \mathrm{H}$ is connected to an alternating source of frequency $50 \mathrm{~Hz}$. Then the inductive reactance is

1 $6.28 \times 10^{-2} \Omega$
2 $1.64 \times 10^{-2} \Omega$
3 $3.14 \times 10^{-2} \Omega$
4 $4.82 \times 10^{-2} \Omega$
Alternating Current

155037 The reactance of an inductor at $50 \mathrm{~Hz}$ is $10 \Omega$. The reactance of it at $200 \mathrm{~Hz}$ is:

1 \(10 \Omega\)
2 \(40 \Omega\)
3 \(2.5 \Omega\)
4 \(20 \Omega\)
Alternating Current

155044 Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are

1 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
2 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{0}\right]$
3 $\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
4 $\left[\mathrm{L}^{0} \mathrm{M}^{1} \mathrm{~T}^{0}\right]$
Alternating Current

155026 Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then

1 $\mathrm{M}=\mathrm{L}_{1} / \mathrm{L}_{2}$
2 $\mathrm{M}=\mathrm{L}_{1} \mathrm{~L}_{2}$
3 $\mathrm{M}=\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
4 $\mathrm{M}=\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right)^{2}$
Alternating Current

155033 An inductor of $200 \mu \mathrm{H}$ is connected to an alternating source of frequency $50 \mathrm{~Hz}$. Then the inductive reactance is

1 $6.28 \times 10^{-2} \Omega$
2 $1.64 \times 10^{-2} \Omega$
3 $3.14 \times 10^{-2} \Omega$
4 $4.82 \times 10^{-2} \Omega$
Alternating Current

155037 The reactance of an inductor at $50 \mathrm{~Hz}$ is $10 \Omega$. The reactance of it at $200 \mathrm{~Hz}$ is:

1 \(10 \Omega\)
2 \(40 \Omega\)
3 \(2.5 \Omega\)
4 \(20 \Omega\)
Alternating Current

155044 Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are

1 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
2 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{0}\right]$
3 $\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
4 $\left[\mathrm{L}^{0} \mathrm{M}^{1} \mathrm{~T}^{0}\right]$
Alternating Current

155026 Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then

1 $\mathrm{M}=\mathrm{L}_{1} / \mathrm{L}_{2}$
2 $\mathrm{M}=\mathrm{L}_{1} \mathrm{~L}_{2}$
3 $\mathrm{M}=\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
4 $\mathrm{M}=\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right)^{2}$
Alternating Current

155033 An inductor of $200 \mu \mathrm{H}$ is connected to an alternating source of frequency $50 \mathrm{~Hz}$. Then the inductive reactance is

1 $6.28 \times 10^{-2} \Omega$
2 $1.64 \times 10^{-2} \Omega$
3 $3.14 \times 10^{-2} \Omega$
4 $4.82 \times 10^{-2} \Omega$
Alternating Current

155037 The reactance of an inductor at $50 \mathrm{~Hz}$ is $10 \Omega$. The reactance of it at $200 \mathrm{~Hz}$ is:

1 \(10 \Omega\)
2 \(40 \Omega\)
3 \(2.5 \Omega\)
4 \(20 \Omega\)
Alternating Current

155044 Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are

1 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
2 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{0}\right]$
3 $\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
4 $\left[\mathrm{L}^{0} \mathrm{M}^{1} \mathrm{~T}^{0}\right]$
Alternating Current

155026 Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then

1 $\mathrm{M}=\mathrm{L}_{1} / \mathrm{L}_{2}$
2 $\mathrm{M}=\mathrm{L}_{1} \mathrm{~L}_{2}$
3 $\mathrm{M}=\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
4 $\mathrm{M}=\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right)^{2}$
Alternating Current

155033 An inductor of $200 \mu \mathrm{H}$ is connected to an alternating source of frequency $50 \mathrm{~Hz}$. Then the inductive reactance is

1 $6.28 \times 10^{-2} \Omega$
2 $1.64 \times 10^{-2} \Omega$
3 $3.14 \times 10^{-2} \Omega$
4 $4.82 \times 10^{-2} \Omega$
Alternating Current

155037 The reactance of an inductor at $50 \mathrm{~Hz}$ is $10 \Omega$. The reactance of it at $200 \mathrm{~Hz}$ is:

1 \(10 \Omega\)
2 \(40 \Omega\)
3 \(2.5 \Omega\)
4 \(20 \Omega\)
Alternating Current

155044 Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are

1 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
2 $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{0}\right]$
3 $\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{1}\right]$
4 $\left[\mathrm{L}^{0} \mathrm{M}^{1} \mathrm{~T}^{0}\right]$