155026
Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then
155044
Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are
A The dimension of inductance, $\mathrm{L}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ The dimension of Resistance, $\mathrm{R}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ The Ratio of inductance to Resistance $\frac{\mathrm{L}}{\mathrm{R}}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}=[\mathrm{T}]=\left[\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{1}\right]$
155026
Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then
155044
Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are
A The dimension of inductance, $\mathrm{L}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ The dimension of Resistance, $\mathrm{R}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ The Ratio of inductance to Resistance $\frac{\mathrm{L}}{\mathrm{R}}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}=[\mathrm{T}]=\left[\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{1}\right]$
155026
Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then
155044
Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are
A The dimension of inductance, $\mathrm{L}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ The dimension of Resistance, $\mathrm{R}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ The Ratio of inductance to Resistance $\frac{\mathrm{L}}{\mathrm{R}}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}=[\mathrm{T}]=\left[\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{1}\right]$
155026
Two different coils of self-inductance $L_{1}$, and $L_{2}$ are placed close to each other, so that the effective flux in one coil is completely linked with other. If $M$ is the mutual inductance between them, then
155044
Let the inductance and resistance be denoted by ' $L$ ' and ' $R$ ' respectively. The dimensions of $\left(\frac{\mathbf{L}}{\mathbf{R}}\right)$ are
A The dimension of inductance, $\mathrm{L}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$ The dimension of Resistance, $\mathrm{R}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$ The Ratio of inductance to Resistance $\frac{\mathrm{L}}{\mathrm{R}}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}=[\mathrm{T}]=\left[\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{1}\right]$