01. A.C. Voltage Applied to Inductance & Capacitor
Alternating Current

155028 In a series $L R$ circuit with $X_{L}=R$, power factor is $P_{1}$. If a capacitor of capacitance $C$ with $X_{C}=$ $X_{L}$ is added to the circuit the power factor becomes $P_{\mathbf{2}}$. The ratio of $P_{\mathbf{1}}$ to $P_{\mathbf{2}}$ will be:

1 $1: 2$
2 $1: 3$
3 $1: 1$
4 $1: \sqrt{2}$
Alternating Current

155029 A charged $10 \mu \mathrm{F}$ capacitor is connoted to a $16 \mathrm{mH}$ inductor. What is the angular frequency of free oscillations of the circuit ?

1 $250 \mathrm{rad} \mathrm{s}^{-1}$
2 $25 \mathrm{rad} \mathrm{s}^{-1}$
3 $1111 \mathrm{rad} \mathrm{s}^{-1}$
4 $2500 \mathrm{rad} \mathrm{s}^{-1}$
Alternating Current

155030 A circuit containing inductance of $\frac{1}{6 \pi} \mathrm{H}$ and a resistance of $15 \Omega$ in series. If an $A C$ voltage of $100 \mathrm{~V}$ and $60 \mathrm{~Hz}$ is applied to above circuit, then the current in the circuit and phase difference between voltage and current respectively are-

1 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{5}$
2 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{3}{4}$
3 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
4 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
Alternating Current

155031 The impedance of an LR circuit with $L=\frac{60}{\pi} \mathrm{mH} . \mathrm{R}=8 \Omega$ and frequency $50 \mathrm{~Hz}$ is

1 $1.3 \Omega$
2 $14.3 \Omega$
3 $20 \Omega$
4 $10 \Omega$
Alternating Current

155028 In a series $L R$ circuit with $X_{L}=R$, power factor is $P_{1}$. If a capacitor of capacitance $C$ with $X_{C}=$ $X_{L}$ is added to the circuit the power factor becomes $P_{\mathbf{2}}$. The ratio of $P_{\mathbf{1}}$ to $P_{\mathbf{2}}$ will be:

1 $1: 2$
2 $1: 3$
3 $1: 1$
4 $1: \sqrt{2}$
Alternating Current

155029 A charged $10 \mu \mathrm{F}$ capacitor is connoted to a $16 \mathrm{mH}$ inductor. What is the angular frequency of free oscillations of the circuit ?

1 $250 \mathrm{rad} \mathrm{s}^{-1}$
2 $25 \mathrm{rad} \mathrm{s}^{-1}$
3 $1111 \mathrm{rad} \mathrm{s}^{-1}$
4 $2500 \mathrm{rad} \mathrm{s}^{-1}$
Alternating Current

155030 A circuit containing inductance of $\frac{1}{6 \pi} \mathrm{H}$ and a resistance of $15 \Omega$ in series. If an $A C$ voltage of $100 \mathrm{~V}$ and $60 \mathrm{~Hz}$ is applied to above circuit, then the current in the circuit and phase difference between voltage and current respectively are-

1 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{5}$
2 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{3}{4}$
3 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
4 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
Alternating Current

155031 The impedance of an LR circuit with $L=\frac{60}{\pi} \mathrm{mH} . \mathrm{R}=8 \Omega$ and frequency $50 \mathrm{~Hz}$ is

1 $1.3 \Omega$
2 $14.3 \Omega$
3 $20 \Omega$
4 $10 \Omega$
Alternating Current

155028 In a series $L R$ circuit with $X_{L}=R$, power factor is $P_{1}$. If a capacitor of capacitance $C$ with $X_{C}=$ $X_{L}$ is added to the circuit the power factor becomes $P_{\mathbf{2}}$. The ratio of $P_{\mathbf{1}}$ to $P_{\mathbf{2}}$ will be:

1 $1: 2$
2 $1: 3$
3 $1: 1$
4 $1: \sqrt{2}$
Alternating Current

155029 A charged $10 \mu \mathrm{F}$ capacitor is connoted to a $16 \mathrm{mH}$ inductor. What is the angular frequency of free oscillations of the circuit ?

1 $250 \mathrm{rad} \mathrm{s}^{-1}$
2 $25 \mathrm{rad} \mathrm{s}^{-1}$
3 $1111 \mathrm{rad} \mathrm{s}^{-1}$
4 $2500 \mathrm{rad} \mathrm{s}^{-1}$
Alternating Current

155030 A circuit containing inductance of $\frac{1}{6 \pi} \mathrm{H}$ and a resistance of $15 \Omega$ in series. If an $A C$ voltage of $100 \mathrm{~V}$ and $60 \mathrm{~Hz}$ is applied to above circuit, then the current in the circuit and phase difference between voltage and current respectively are-

1 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{5}$
2 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{3}{4}$
3 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
4 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
Alternating Current

155031 The impedance of an LR circuit with $L=\frac{60}{\pi} \mathrm{mH} . \mathrm{R}=8 \Omega$ and frequency $50 \mathrm{~Hz}$ is

1 $1.3 \Omega$
2 $14.3 \Omega$
3 $20 \Omega$
4 $10 \Omega$
Alternating Current

155028 In a series $L R$ circuit with $X_{L}=R$, power factor is $P_{1}$. If a capacitor of capacitance $C$ with $X_{C}=$ $X_{L}$ is added to the circuit the power factor becomes $P_{\mathbf{2}}$. The ratio of $P_{\mathbf{1}}$ to $P_{\mathbf{2}}$ will be:

1 $1: 2$
2 $1: 3$
3 $1: 1$
4 $1: \sqrt{2}$
Alternating Current

155029 A charged $10 \mu \mathrm{F}$ capacitor is connoted to a $16 \mathrm{mH}$ inductor. What is the angular frequency of free oscillations of the circuit ?

1 $250 \mathrm{rad} \mathrm{s}^{-1}$
2 $25 \mathrm{rad} \mathrm{s}^{-1}$
3 $1111 \mathrm{rad} \mathrm{s}^{-1}$
4 $2500 \mathrm{rad} \mathrm{s}^{-1}$
Alternating Current

155030 A circuit containing inductance of $\frac{1}{6 \pi} \mathrm{H}$ and a resistance of $15 \Omega$ in series. If an $A C$ voltage of $100 \mathrm{~V}$ and $60 \mathrm{~Hz}$ is applied to above circuit, then the current in the circuit and phase difference between voltage and current respectively are-

1 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{5}$
2 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{3}{4}$
3 $4 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
4 $5.3 \mathrm{~A}$ and $\tan ^{-1} \frac{4}{3}$
Alternating Current

155031 The impedance of an LR circuit with $L=\frac{60}{\pi} \mathrm{mH} . \mathrm{R}=8 \Omega$ and frequency $50 \mathrm{~Hz}$ is

1 $1.3 \Omega$
2 $14.3 \Omega$
3 $20 \Omega$
4 $10 \Omega$