01. A.C. Voltage Applied to Inductance & Capacitor
Alternating Current

155023 A $0.01 \mathrm{H}$ inductor and $\sqrt{3} \pi \mathrm{ohm}$ resistance are connected in series with a $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source. The phase difference between the current and emf is

1 $\frac{\pi}{2} \mathrm{rad}$
2 $\frac{\pi}{6} \mathrm{rad}$
3 $\frac{\pi}{3} \mathrm{rad}$
4 $\frac{\pi}{4} \mathrm{rad}$
Alternating Current

155024 An alternating voltage source $V=260$ sin (628t) is connected across a pure inductor of $5 \mathrm{mH}$. Inductive reactance in the circuit is:

1 $3.14 \Omega$
2 $6.28 \Omega$
3 $0.318 \Omega$
4 $0.5 \Omega$
Alternating Current

155025 What will be the self-inductance of a coil of 100 turns if a current of $5 \mathrm{~A}$ produces a magnetic flux $5 \times 10^{-5} \mathrm{~Wb}$ ?

1 $1 \mathrm{mH}$
2 $10 \mathrm{mH}$
3 $1 \mu \mathrm{H}$
4 $10 \mu \mathrm{H}$
Alternating Current

155027 If $\mathbf{N}$ is the number of turns in a coil, the value of self-inductance varies as

1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{-2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155023 A $0.01 \mathrm{H}$ inductor and $\sqrt{3} \pi \mathrm{ohm}$ resistance are connected in series with a $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source. The phase difference between the current and emf is

1 $\frac{\pi}{2} \mathrm{rad}$
2 $\frac{\pi}{6} \mathrm{rad}$
3 $\frac{\pi}{3} \mathrm{rad}$
4 $\frac{\pi}{4} \mathrm{rad}$
Alternating Current

155024 An alternating voltage source $V=260$ sin (628t) is connected across a pure inductor of $5 \mathrm{mH}$. Inductive reactance in the circuit is:

1 $3.14 \Omega$
2 $6.28 \Omega$
3 $0.318 \Omega$
4 $0.5 \Omega$
Alternating Current

155025 What will be the self-inductance of a coil of 100 turns if a current of $5 \mathrm{~A}$ produces a magnetic flux $5 \times 10^{-5} \mathrm{~Wb}$ ?

1 $1 \mathrm{mH}$
2 $10 \mathrm{mH}$
3 $1 \mu \mathrm{H}$
4 $10 \mu \mathrm{H}$
Alternating Current

155027 If $\mathbf{N}$ is the number of turns in a coil, the value of self-inductance varies as

1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{-2}$
Alternating Current

155023 A $0.01 \mathrm{H}$ inductor and $\sqrt{3} \pi \mathrm{ohm}$ resistance are connected in series with a $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source. The phase difference between the current and emf is

1 $\frac{\pi}{2} \mathrm{rad}$
2 $\frac{\pi}{6} \mathrm{rad}$
3 $\frac{\pi}{3} \mathrm{rad}$
4 $\frac{\pi}{4} \mathrm{rad}$
Alternating Current

155024 An alternating voltage source $V=260$ sin (628t) is connected across a pure inductor of $5 \mathrm{mH}$. Inductive reactance in the circuit is:

1 $3.14 \Omega$
2 $6.28 \Omega$
3 $0.318 \Omega$
4 $0.5 \Omega$
Alternating Current

155025 What will be the self-inductance of a coil of 100 turns if a current of $5 \mathrm{~A}$ produces a magnetic flux $5 \times 10^{-5} \mathrm{~Wb}$ ?

1 $1 \mathrm{mH}$
2 $10 \mathrm{mH}$
3 $1 \mu \mathrm{H}$
4 $10 \mu \mathrm{H}$
Alternating Current

155027 If $\mathbf{N}$ is the number of turns in a coil, the value of self-inductance varies as

1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{-2}$
Alternating Current

155023 A $0.01 \mathrm{H}$ inductor and $\sqrt{3} \pi \mathrm{ohm}$ resistance are connected in series with a $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source. The phase difference between the current and emf is

1 $\frac{\pi}{2} \mathrm{rad}$
2 $\frac{\pi}{6} \mathrm{rad}$
3 $\frac{\pi}{3} \mathrm{rad}$
4 $\frac{\pi}{4} \mathrm{rad}$
Alternating Current

155024 An alternating voltage source $V=260$ sin (628t) is connected across a pure inductor of $5 \mathrm{mH}$. Inductive reactance in the circuit is:

1 $3.14 \Omega$
2 $6.28 \Omega$
3 $0.318 \Omega$
4 $0.5 \Omega$
Alternating Current

155025 What will be the self-inductance of a coil of 100 turns if a current of $5 \mathrm{~A}$ produces a magnetic flux $5 \times 10^{-5} \mathrm{~Wb}$ ?

1 $1 \mathrm{mH}$
2 $10 \mathrm{mH}$
3 $1 \mu \mathrm{H}$
4 $10 \mu \mathrm{H}$
Alternating Current

155027 If $\mathbf{N}$ is the number of turns in a coil, the value of self-inductance varies as

1 $\mathrm{N}^{\circ}$
2 $\mathrm{N}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{-2}$