00. A.C. Voltage in Resistor and Phasor
Alternating Current

154993 If an alternating voltage is represented as $E=$ $141 \sin (628 \mathrm{t})$, then the rms value of the voltage and the frequency are respectively:

1 $141 \mathrm{~V}, 628 \mathrm{~Hz}$
2 $100 \mathrm{~V}, 50 \mathrm{~Hz}$
3 $100 \mathrm{~V}, 100 \mathrm{~Hz}$
4 $141 \mathrm{~V}, 100 \mathrm{HZ}$
5 $100 \mathrm{~V}, 314 \mathrm{HZ}$
Alternating Current

154994 A pure resistive circuit element $X$ when connected to an AC supply of peak voltage $200 \mathrm{~V}$ gives a peak current of $5 \mathrm{~A}$. A second current element $Y$ when connected to same AC supply gives the same value of peak current but the current lags behind by $90^{\circ}$. If series combination of $X$ and $Y$ is connected to the same supply, what is the impedance of the circuit?

1 $40 \Omega$
2 $80 \Omega$
3 $40 \sqrt{2} \Omega$
4 $2 \sqrt{40} \Omega$
Alternating Current

154997 For an A.C given by $\mathrm{I}=50 \cos \left(100 \mathrm{t}+45^{\circ}\right) \mathrm{A}$. The value of $\mathrm{I}_{\mathrm{rms}}=$

1 Zero
2 $50 \sqrt{2}$
3 25
4 $25 \sqrt{2}$
Alternating Current

154999 R.M.S. current, in A, in the circuit is

1 1
2 5
3 2
4 2.5
Alternating Current

155001 If instantaneous current is given by $I=4$ $\cos (\omega t+\phi) \mathrm{A}$, then the rms value of current is

1 $2 \sqrt{2} \mathrm{~A}$
2 $4 \mathrm{~A}$
3 $4 \sqrt{2} \mathrm{~A}$
4 $0 \mathrm{~A}$
Alternating Current

154993 If an alternating voltage is represented as $E=$ $141 \sin (628 \mathrm{t})$, then the rms value of the voltage and the frequency are respectively:

1 $141 \mathrm{~V}, 628 \mathrm{~Hz}$
2 $100 \mathrm{~V}, 50 \mathrm{~Hz}$
3 $100 \mathrm{~V}, 100 \mathrm{~Hz}$
4 $141 \mathrm{~V}, 100 \mathrm{HZ}$
5 $100 \mathrm{~V}, 314 \mathrm{HZ}$
Alternating Current

154994 A pure resistive circuit element $X$ when connected to an AC supply of peak voltage $200 \mathrm{~V}$ gives a peak current of $5 \mathrm{~A}$. A second current element $Y$ when connected to same AC supply gives the same value of peak current but the current lags behind by $90^{\circ}$. If series combination of $X$ and $Y$ is connected to the same supply, what is the impedance of the circuit?

1 $40 \Omega$
2 $80 \Omega$
3 $40 \sqrt{2} \Omega$
4 $2 \sqrt{40} \Omega$
Alternating Current

154997 For an A.C given by $\mathrm{I}=50 \cos \left(100 \mathrm{t}+45^{\circ}\right) \mathrm{A}$. The value of $\mathrm{I}_{\mathrm{rms}}=$

1 Zero
2 $50 \sqrt{2}$
3 25
4 $25 \sqrt{2}$
Alternating Current

154999 R.M.S. current, in A, in the circuit is

1 1
2 5
3 2
4 2.5
Alternating Current

155001 If instantaneous current is given by $I=4$ $\cos (\omega t+\phi) \mathrm{A}$, then the rms value of current is

1 $2 \sqrt{2} \mathrm{~A}$
2 $4 \mathrm{~A}$
3 $4 \sqrt{2} \mathrm{~A}$
4 $0 \mathrm{~A}$
Alternating Current

154993 If an alternating voltage is represented as $E=$ $141 \sin (628 \mathrm{t})$, then the rms value of the voltage and the frequency are respectively:

1 $141 \mathrm{~V}, 628 \mathrm{~Hz}$
2 $100 \mathrm{~V}, 50 \mathrm{~Hz}$
3 $100 \mathrm{~V}, 100 \mathrm{~Hz}$
4 $141 \mathrm{~V}, 100 \mathrm{HZ}$
5 $100 \mathrm{~V}, 314 \mathrm{HZ}$
Alternating Current

154994 A pure resistive circuit element $X$ when connected to an AC supply of peak voltage $200 \mathrm{~V}$ gives a peak current of $5 \mathrm{~A}$. A second current element $Y$ when connected to same AC supply gives the same value of peak current but the current lags behind by $90^{\circ}$. If series combination of $X$ and $Y$ is connected to the same supply, what is the impedance of the circuit?

1 $40 \Omega$
2 $80 \Omega$
3 $40 \sqrt{2} \Omega$
4 $2 \sqrt{40} \Omega$
Alternating Current

154997 For an A.C given by $\mathrm{I}=50 \cos \left(100 \mathrm{t}+45^{\circ}\right) \mathrm{A}$. The value of $\mathrm{I}_{\mathrm{rms}}=$

1 Zero
2 $50 \sqrt{2}$
3 25
4 $25 \sqrt{2}$
Alternating Current

154999 R.M.S. current, in A, in the circuit is

1 1
2 5
3 2
4 2.5
Alternating Current

155001 If instantaneous current is given by $I=4$ $\cos (\omega t+\phi) \mathrm{A}$, then the rms value of current is

1 $2 \sqrt{2} \mathrm{~A}$
2 $4 \mathrm{~A}$
3 $4 \sqrt{2} \mathrm{~A}$
4 $0 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

154993 If an alternating voltage is represented as $E=$ $141 \sin (628 \mathrm{t})$, then the rms value of the voltage and the frequency are respectively:

1 $141 \mathrm{~V}, 628 \mathrm{~Hz}$
2 $100 \mathrm{~V}, 50 \mathrm{~Hz}$
3 $100 \mathrm{~V}, 100 \mathrm{~Hz}$
4 $141 \mathrm{~V}, 100 \mathrm{HZ}$
5 $100 \mathrm{~V}, 314 \mathrm{HZ}$
Alternating Current

154994 A pure resistive circuit element $X$ when connected to an AC supply of peak voltage $200 \mathrm{~V}$ gives a peak current of $5 \mathrm{~A}$. A second current element $Y$ when connected to same AC supply gives the same value of peak current but the current lags behind by $90^{\circ}$. If series combination of $X$ and $Y$ is connected to the same supply, what is the impedance of the circuit?

1 $40 \Omega$
2 $80 \Omega$
3 $40 \sqrt{2} \Omega$
4 $2 \sqrt{40} \Omega$
Alternating Current

154997 For an A.C given by $\mathrm{I}=50 \cos \left(100 \mathrm{t}+45^{\circ}\right) \mathrm{A}$. The value of $\mathrm{I}_{\mathrm{rms}}=$

1 Zero
2 $50 \sqrt{2}$
3 25
4 $25 \sqrt{2}$
Alternating Current

154999 R.M.S. current, in A, in the circuit is

1 1
2 5
3 2
4 2.5
Alternating Current

155001 If instantaneous current is given by $I=4$ $\cos (\omega t+\phi) \mathrm{A}$, then the rms value of current is

1 $2 \sqrt{2} \mathrm{~A}$
2 $4 \mathrm{~A}$
3 $4 \sqrt{2} \mathrm{~A}$
4 $0 \mathrm{~A}$
Alternating Current

154993 If an alternating voltage is represented as $E=$ $141 \sin (628 \mathrm{t})$, then the rms value of the voltage and the frequency are respectively:

1 $141 \mathrm{~V}, 628 \mathrm{~Hz}$
2 $100 \mathrm{~V}, 50 \mathrm{~Hz}$
3 $100 \mathrm{~V}, 100 \mathrm{~Hz}$
4 $141 \mathrm{~V}, 100 \mathrm{HZ}$
5 $100 \mathrm{~V}, 314 \mathrm{HZ}$
Alternating Current

154994 A pure resistive circuit element $X$ when connected to an AC supply of peak voltage $200 \mathrm{~V}$ gives a peak current of $5 \mathrm{~A}$. A second current element $Y$ when connected to same AC supply gives the same value of peak current but the current lags behind by $90^{\circ}$. If series combination of $X$ and $Y$ is connected to the same supply, what is the impedance of the circuit?

1 $40 \Omega$
2 $80 \Omega$
3 $40 \sqrt{2} \Omega$
4 $2 \sqrt{40} \Omega$
Alternating Current

154997 For an A.C given by $\mathrm{I}=50 \cos \left(100 \mathrm{t}+45^{\circ}\right) \mathrm{A}$. The value of $\mathrm{I}_{\mathrm{rms}}=$

1 Zero
2 $50 \sqrt{2}$
3 25
4 $25 \sqrt{2}$
Alternating Current

154999 R.M.S. current, in A, in the circuit is

1 1
2 5
3 2
4 2.5
Alternating Current

155001 If instantaneous current is given by $I=4$ $\cos (\omega t+\phi) \mathrm{A}$, then the rms value of current is

1 $2 \sqrt{2} \mathrm{~A}$
2 $4 \mathrm{~A}$
3 $4 \sqrt{2} \mathrm{~A}$
4 $0 \mathrm{~A}$