00. A.C. Voltage in Resistor and Phasor
Alternating Current

154989 An AC voltage source has an output of $\Delta \mathrm{V}=(200 \mathrm{~V}) \sin 2 \pi \mathrm{ft}$. This source is connected to a $100 \Omega$ resistor. RMS current in the resistance is

1 $1.41 \mathrm{~A}$
2 $2.41 \mathrm{~A}$
3 $3.41 \mathrm{~A}$
4 $0.71 \mathrm{~A}$
Alternating Current

154990 An AC source of voltage $E=20 \sin 100 t$ is connected across a resistance $20 \Omega$. The rms value of current in the circuit is

1 $1 \mathrm{~A}$
2 $\frac{1}{2} \mathrm{~A}$
3 $\sqrt{2} \mathrm{~A}$
4 $2 \sqrt{2} \mathrm{~A}$
5 $\frac{1}{\sqrt{2}} \mathrm{~A}$
Alternating Current

154991 If $E=100 \sin (100$ t $)$ volt and $I=100 \sin$ $\left(100 t+\frac{\pi}{3}\right) \mathrm{mA}$ are the instantaneous values of voltage and current, then the rms values of voltage and current are respectively

1 $70.7 \mathrm{~V}, 70.7 \mathrm{~mA}$
2 $70.7 \mathrm{~V}, 70.7 \mathrm{~A}$
3 $141.4 \mathrm{~V} 141.4 \mathrm{~mA}$
4 $141.4 \mathrm{~V}, 141.4 \mathrm{~A}$
5 $100 \mathrm{~V}, 100 \mathrm{~mA}$
Alternating Current

154992 In a $L-R$ circuit, the value of $L$ is $\left(\frac{0.4}{\pi}\right) \mathrm{H}$ and the value of $R$ is $30 \Omega$. If in the circuit, an alternating emf of $200 \mathrm{~V}$ at 50 cycles/s is connected, the impedance of the circuit and current will be

1 $11.4 \Omega, 17.5 \mathrm{~A}$
2 $30.7 \Omega, 6.5 \mathrm{~A}$
3 $40.4 \Omega, 5 \mathrm{~A}$
4 $50 \Omega, 4 \mathrm{~A}$
5 $35 \Omega, 6.5 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

154989 An AC voltage source has an output of $\Delta \mathrm{V}=(200 \mathrm{~V}) \sin 2 \pi \mathrm{ft}$. This source is connected to a $100 \Omega$ resistor. RMS current in the resistance is

1 $1.41 \mathrm{~A}$
2 $2.41 \mathrm{~A}$
3 $3.41 \mathrm{~A}$
4 $0.71 \mathrm{~A}$
Alternating Current

154990 An AC source of voltage $E=20 \sin 100 t$ is connected across a resistance $20 \Omega$. The rms value of current in the circuit is

1 $1 \mathrm{~A}$
2 $\frac{1}{2} \mathrm{~A}$
3 $\sqrt{2} \mathrm{~A}$
4 $2 \sqrt{2} \mathrm{~A}$
5 $\frac{1}{\sqrt{2}} \mathrm{~A}$
Alternating Current

154991 If $E=100 \sin (100$ t $)$ volt and $I=100 \sin$ $\left(100 t+\frac{\pi}{3}\right) \mathrm{mA}$ are the instantaneous values of voltage and current, then the rms values of voltage and current are respectively

1 $70.7 \mathrm{~V}, 70.7 \mathrm{~mA}$
2 $70.7 \mathrm{~V}, 70.7 \mathrm{~A}$
3 $141.4 \mathrm{~V} 141.4 \mathrm{~mA}$
4 $141.4 \mathrm{~V}, 141.4 \mathrm{~A}$
5 $100 \mathrm{~V}, 100 \mathrm{~mA}$
Alternating Current

154992 In a $L-R$ circuit, the value of $L$ is $\left(\frac{0.4}{\pi}\right) \mathrm{H}$ and the value of $R$ is $30 \Omega$. If in the circuit, an alternating emf of $200 \mathrm{~V}$ at 50 cycles/s is connected, the impedance of the circuit and current will be

1 $11.4 \Omega, 17.5 \mathrm{~A}$
2 $30.7 \Omega, 6.5 \mathrm{~A}$
3 $40.4 \Omega, 5 \mathrm{~A}$
4 $50 \Omega, 4 \mathrm{~A}$
5 $35 \Omega, 6.5 \mathrm{~A}$
Alternating Current

154989 An AC voltage source has an output of $\Delta \mathrm{V}=(200 \mathrm{~V}) \sin 2 \pi \mathrm{ft}$. This source is connected to a $100 \Omega$ resistor. RMS current in the resistance is

1 $1.41 \mathrm{~A}$
2 $2.41 \mathrm{~A}$
3 $3.41 \mathrm{~A}$
4 $0.71 \mathrm{~A}$
Alternating Current

154990 An AC source of voltage $E=20 \sin 100 t$ is connected across a resistance $20 \Omega$. The rms value of current in the circuit is

1 $1 \mathrm{~A}$
2 $\frac{1}{2} \mathrm{~A}$
3 $\sqrt{2} \mathrm{~A}$
4 $2 \sqrt{2} \mathrm{~A}$
5 $\frac{1}{\sqrt{2}} \mathrm{~A}$
Alternating Current

154991 If $E=100 \sin (100$ t $)$ volt and $I=100 \sin$ $\left(100 t+\frac{\pi}{3}\right) \mathrm{mA}$ are the instantaneous values of voltage and current, then the rms values of voltage and current are respectively

1 $70.7 \mathrm{~V}, 70.7 \mathrm{~mA}$
2 $70.7 \mathrm{~V}, 70.7 \mathrm{~A}$
3 $141.4 \mathrm{~V} 141.4 \mathrm{~mA}$
4 $141.4 \mathrm{~V}, 141.4 \mathrm{~A}$
5 $100 \mathrm{~V}, 100 \mathrm{~mA}$
Alternating Current

154992 In a $L-R$ circuit, the value of $L$ is $\left(\frac{0.4}{\pi}\right) \mathrm{H}$ and the value of $R$ is $30 \Omega$. If in the circuit, an alternating emf of $200 \mathrm{~V}$ at 50 cycles/s is connected, the impedance of the circuit and current will be

1 $11.4 \Omega, 17.5 \mathrm{~A}$
2 $30.7 \Omega, 6.5 \mathrm{~A}$
3 $40.4 \Omega, 5 \mathrm{~A}$
4 $50 \Omega, 4 \mathrm{~A}$
5 $35 \Omega, 6.5 \mathrm{~A}$
Alternating Current

154989 An AC voltage source has an output of $\Delta \mathrm{V}=(200 \mathrm{~V}) \sin 2 \pi \mathrm{ft}$. This source is connected to a $100 \Omega$ resistor. RMS current in the resistance is

1 $1.41 \mathrm{~A}$
2 $2.41 \mathrm{~A}$
3 $3.41 \mathrm{~A}$
4 $0.71 \mathrm{~A}$
Alternating Current

154990 An AC source of voltage $E=20 \sin 100 t$ is connected across a resistance $20 \Omega$. The rms value of current in the circuit is

1 $1 \mathrm{~A}$
2 $\frac{1}{2} \mathrm{~A}$
3 $\sqrt{2} \mathrm{~A}$
4 $2 \sqrt{2} \mathrm{~A}$
5 $\frac{1}{\sqrt{2}} \mathrm{~A}$
Alternating Current

154991 If $E=100 \sin (100$ t $)$ volt and $I=100 \sin$ $\left(100 t+\frac{\pi}{3}\right) \mathrm{mA}$ are the instantaneous values of voltage and current, then the rms values of voltage and current are respectively

1 $70.7 \mathrm{~V}, 70.7 \mathrm{~mA}$
2 $70.7 \mathrm{~V}, 70.7 \mathrm{~A}$
3 $141.4 \mathrm{~V} 141.4 \mathrm{~mA}$
4 $141.4 \mathrm{~V}, 141.4 \mathrm{~A}$
5 $100 \mathrm{~V}, 100 \mathrm{~mA}$
Alternating Current

154992 In a $L-R$ circuit, the value of $L$ is $\left(\frac{0.4}{\pi}\right) \mathrm{H}$ and the value of $R$ is $30 \Omega$. If in the circuit, an alternating emf of $200 \mathrm{~V}$ at 50 cycles/s is connected, the impedance of the circuit and current will be

1 $11.4 \Omega, 17.5 \mathrm{~A}$
2 $30.7 \Omega, 6.5 \mathrm{~A}$
3 $40.4 \Omega, 5 \mathrm{~A}$
4 $50 \Omega, 4 \mathrm{~A}$
5 $35 \Omega, 6.5 \mathrm{~A}$