03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154822 When a current changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$ in a coil, induced emf is $8 \mathrm{~V}$. The selfinductance of coil is

1 $0.1 \mathrm{H}$
2 $0.2 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.8 \mathrm{H}$
Electro Magnetic Induction

154825 In the figure, there are two semi-circles of radii $r_{1}$ and $r_{2}$ in which a current $i$ is flowing. The magnetic induction at centre $O$ will be

1 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}+r_{2}\right)$
2 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}-r_{2}\right)$
3 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4}\left(\frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{\mathrm{r}_{1} \mathrm{r}_{2}}\right)$
4 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4 \pi}\left(\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{\mathrm{r}_{2} \mathrm{r}_{1}}\right)$
Electro Magnetic Induction

154828 The magnetic flux linked with a coil at any instant $t$ is given by $\phi=5 t^{3}-100 t+300$, the emf induced in the coil after $t=2 s$ is

1 $-40 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $140 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154832 In a coil of self inductance $0.5 \mathrm{H}$, the current varies at a constant rate from zero to $10 \mathrm{~A}$ is $2 \mathrm{~s}$. The emf generated in the coil is

1 $10 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.25 \mathrm{~V}$
Electro Magnetic Induction

154822 When a current changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$ in a coil, induced emf is $8 \mathrm{~V}$. The selfinductance of coil is

1 $0.1 \mathrm{H}$
2 $0.2 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.8 \mathrm{H}$
Electro Magnetic Induction

154825 In the figure, there are two semi-circles of radii $r_{1}$ and $r_{2}$ in which a current $i$ is flowing. The magnetic induction at centre $O$ will be

1 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}+r_{2}\right)$
2 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}-r_{2}\right)$
3 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4}\left(\frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{\mathrm{r}_{1} \mathrm{r}_{2}}\right)$
4 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4 \pi}\left(\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{\mathrm{r}_{2} \mathrm{r}_{1}}\right)$
Electro Magnetic Induction

154828 The magnetic flux linked with a coil at any instant $t$ is given by $\phi=5 t^{3}-100 t+300$, the emf induced in the coil after $t=2 s$ is

1 $-40 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $140 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154832 In a coil of self inductance $0.5 \mathrm{H}$, the current varies at a constant rate from zero to $10 \mathrm{~A}$ is $2 \mathrm{~s}$. The emf generated in the coil is

1 $10 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.25 \mathrm{~V}$
Electro Magnetic Induction

154822 When a current changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$ in a coil, induced emf is $8 \mathrm{~V}$. The selfinductance of coil is

1 $0.1 \mathrm{H}$
2 $0.2 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.8 \mathrm{H}$
Electro Magnetic Induction

154825 In the figure, there are two semi-circles of radii $r_{1}$ and $r_{2}$ in which a current $i$ is flowing. The magnetic induction at centre $O$ will be

1 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}+r_{2}\right)$
2 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}-r_{2}\right)$
3 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4}\left(\frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{\mathrm{r}_{1} \mathrm{r}_{2}}\right)$
4 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4 \pi}\left(\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{\mathrm{r}_{2} \mathrm{r}_{1}}\right)$
Electro Magnetic Induction

154828 The magnetic flux linked with a coil at any instant $t$ is given by $\phi=5 t^{3}-100 t+300$, the emf induced in the coil after $t=2 s$ is

1 $-40 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $140 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154832 In a coil of self inductance $0.5 \mathrm{H}$, the current varies at a constant rate from zero to $10 \mathrm{~A}$ is $2 \mathrm{~s}$. The emf generated in the coil is

1 $10 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.25 \mathrm{~V}$
Electro Magnetic Induction

154822 When a current changes from $2 \mathrm{~A}$ to $4 \mathrm{~A}$ in $0.05 \mathrm{~s}$ in a coil, induced emf is $8 \mathrm{~V}$. The selfinductance of coil is

1 $0.1 \mathrm{H}$
2 $0.2 \mathrm{H}$
3 $0.4 \mathrm{H}$
4 $0.8 \mathrm{H}$
Electro Magnetic Induction

154825 In the figure, there are two semi-circles of radii $r_{1}$ and $r_{2}$ in which a current $i$ is flowing. The magnetic induction at centre $O$ will be

1 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}+r_{2}\right)$
2 $\frac{\mu_{0} i}{4 \pi}\left(r_{1}-r_{2}\right)$
3 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4}\left(\frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{\mathrm{r}_{1} \mathrm{r}_{2}}\right)$
4 $\frac{\mu_{\mathrm{o}} \mathrm{i}}{4 \pi}\left(\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{\mathrm{r}_{2} \mathrm{r}_{1}}\right)$
Electro Magnetic Induction

154828 The magnetic flux linked with a coil at any instant $t$ is given by $\phi=5 t^{3}-100 t+300$, the emf induced in the coil after $t=2 s$ is

1 $-40 \mathrm{~V}$
2 $40 \mathrm{~V}$
3 $140 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154832 In a coil of self inductance $0.5 \mathrm{H}$, the current varies at a constant rate from zero to $10 \mathrm{~A}$ is $2 \mathrm{~s}$. The emf generated in the coil is

1 $10 \mathrm{~V}$
2 $5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $1.25 \mathrm{~V}$