03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154815 Two coils have mutual inductance $0.005 \mathrm{H}$. The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=$ $100 \pi \mathrm{rad} / \mathrm{s}$. The maximum value of emf in the second coil is

1 $12 \pi$
2 $8 \pi$
3 $5 \pi$
4 $2 \pi$
Electro Magnetic Induction

154816 A coil having $n$ turns and resistance $R \Omega$ is connected with a galvanometer of resistance $4 R$ $\Omega$. This combination is moved in time $t$ second from a magnetic field $w_{1}$ Weber to $w_{2}$ Weber. The induced current in the circuit is

1 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
2 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
3 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rnt}}$
4 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rt}}$
Electro Magnetic Induction

154819 Current in a coil changes from $5 \mathrm{~A}$ to $10 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If the coefficient of self-induction is $10 \mathrm{H}$, then the induced emf is

1 $112 \mathrm{~V}$
2 $250 \mathrm{~V}$
3 $125 \mathrm{~V}$
4 $230 \mathrm{~V}$
Electro Magnetic Induction

154820 In a coil when current changes from $10 \mathrm{~A}$ to $2 \mathrm{~A}$ in time $0.1 \mathrm{~s}$, induced emf is $3.28 \mathrm{~V}$.
What is self-inductance of coil?

1 $4 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.04 \mathrm{H}$
4 $5 \mathrm{H}$
Electro Magnetic Induction

154821 Two long straight conductors with currents $I_{1}$ and $I_{2}$ are placed along $X$-axis and $Y$-axis as shown in figure. The equation of locus of zero magnetic induction is

1 $y=x$
2 $\mathrm{y}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \mathrm{x}$
3 $\mathrm{y}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \mathrm{x}$
4 $\mathrm{y}=\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{x}$
Electro Magnetic Induction

154815 Two coils have mutual inductance $0.005 \mathrm{H}$. The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=$ $100 \pi \mathrm{rad} / \mathrm{s}$. The maximum value of emf in the second coil is

1 $12 \pi$
2 $8 \pi$
3 $5 \pi$
4 $2 \pi$
Electro Magnetic Induction

154816 A coil having $n$ turns and resistance $R \Omega$ is connected with a galvanometer of resistance $4 R$ $\Omega$. This combination is moved in time $t$ second from a magnetic field $w_{1}$ Weber to $w_{2}$ Weber. The induced current in the circuit is

1 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
2 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
3 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rnt}}$
4 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rt}}$
Electro Magnetic Induction

154819 Current in a coil changes from $5 \mathrm{~A}$ to $10 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If the coefficient of self-induction is $10 \mathrm{H}$, then the induced emf is

1 $112 \mathrm{~V}$
2 $250 \mathrm{~V}$
3 $125 \mathrm{~V}$
4 $230 \mathrm{~V}$
Electro Magnetic Induction

154820 In a coil when current changes from $10 \mathrm{~A}$ to $2 \mathrm{~A}$ in time $0.1 \mathrm{~s}$, induced emf is $3.28 \mathrm{~V}$.
What is self-inductance of coil?

1 $4 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.04 \mathrm{H}$
4 $5 \mathrm{H}$
Electro Magnetic Induction

154821 Two long straight conductors with currents $I_{1}$ and $I_{2}$ are placed along $X$-axis and $Y$-axis as shown in figure. The equation of locus of zero magnetic induction is

1 $y=x$
2 $\mathrm{y}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \mathrm{x}$
3 $\mathrm{y}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \mathrm{x}$
4 $\mathrm{y}=\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{x}$
Electro Magnetic Induction

154815 Two coils have mutual inductance $0.005 \mathrm{H}$. The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=$ $100 \pi \mathrm{rad} / \mathrm{s}$. The maximum value of emf in the second coil is

1 $12 \pi$
2 $8 \pi$
3 $5 \pi$
4 $2 \pi$
Electro Magnetic Induction

154816 A coil having $n$ turns and resistance $R \Omega$ is connected with a galvanometer of resistance $4 R$ $\Omega$. This combination is moved in time $t$ second from a magnetic field $w_{1}$ Weber to $w_{2}$ Weber. The induced current in the circuit is

1 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
2 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
3 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rnt}}$
4 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rt}}$
Electro Magnetic Induction

154819 Current in a coil changes from $5 \mathrm{~A}$ to $10 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If the coefficient of self-induction is $10 \mathrm{H}$, then the induced emf is

1 $112 \mathrm{~V}$
2 $250 \mathrm{~V}$
3 $125 \mathrm{~V}$
4 $230 \mathrm{~V}$
Electro Magnetic Induction

154820 In a coil when current changes from $10 \mathrm{~A}$ to $2 \mathrm{~A}$ in time $0.1 \mathrm{~s}$, induced emf is $3.28 \mathrm{~V}$.
What is self-inductance of coil?

1 $4 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.04 \mathrm{H}$
4 $5 \mathrm{H}$
Electro Magnetic Induction

154821 Two long straight conductors with currents $I_{1}$ and $I_{2}$ are placed along $X$-axis and $Y$-axis as shown in figure. The equation of locus of zero magnetic induction is

1 $y=x$
2 $\mathrm{y}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \mathrm{x}$
3 $\mathrm{y}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \mathrm{x}$
4 $\mathrm{y}=\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{x}$
Electro Magnetic Induction

154815 Two coils have mutual inductance $0.005 \mathrm{H}$. The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=$ $100 \pi \mathrm{rad} / \mathrm{s}$. The maximum value of emf in the second coil is

1 $12 \pi$
2 $8 \pi$
3 $5 \pi$
4 $2 \pi$
Electro Magnetic Induction

154816 A coil having $n$ turns and resistance $R \Omega$ is connected with a galvanometer of resistance $4 R$ $\Omega$. This combination is moved in time $t$ second from a magnetic field $w_{1}$ Weber to $w_{2}$ Weber. The induced current in the circuit is

1 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
2 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
3 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rnt}}$
4 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rt}}$
Electro Magnetic Induction

154819 Current in a coil changes from $5 \mathrm{~A}$ to $10 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If the coefficient of self-induction is $10 \mathrm{H}$, then the induced emf is

1 $112 \mathrm{~V}$
2 $250 \mathrm{~V}$
3 $125 \mathrm{~V}$
4 $230 \mathrm{~V}$
Electro Magnetic Induction

154820 In a coil when current changes from $10 \mathrm{~A}$ to $2 \mathrm{~A}$ in time $0.1 \mathrm{~s}$, induced emf is $3.28 \mathrm{~V}$.
What is self-inductance of coil?

1 $4 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.04 \mathrm{H}$
4 $5 \mathrm{H}$
Electro Magnetic Induction

154821 Two long straight conductors with currents $I_{1}$ and $I_{2}$ are placed along $X$-axis and $Y$-axis as shown in figure. The equation of locus of zero magnetic induction is

1 $y=x$
2 $\mathrm{y}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \mathrm{x}$
3 $\mathrm{y}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \mathrm{x}$
4 $\mathrm{y}=\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{x}$
Electro Magnetic Induction

154815 Two coils have mutual inductance $0.005 \mathrm{H}$. The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=$ $100 \pi \mathrm{rad} / \mathrm{s}$. The maximum value of emf in the second coil is

1 $12 \pi$
2 $8 \pi$
3 $5 \pi$
4 $2 \pi$
Electro Magnetic Induction

154816 A coil having $n$ turns and resistance $R \Omega$ is connected with a galvanometer of resistance $4 R$ $\Omega$. This combination is moved in time $t$ second from a magnetic field $w_{1}$ Weber to $w_{2}$ Weber. The induced current in the circuit is

1 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
2 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{5 \mathrm{Rt}}$
3 $\frac{-\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rnt}}$
4 $\frac{-\mathrm{n}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)}{\mathrm{Rt}}$
Electro Magnetic Induction

154819 Current in a coil changes from $5 \mathrm{~A}$ to $10 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If the coefficient of self-induction is $10 \mathrm{H}$, then the induced emf is

1 $112 \mathrm{~V}$
2 $250 \mathrm{~V}$
3 $125 \mathrm{~V}$
4 $230 \mathrm{~V}$
Electro Magnetic Induction

154820 In a coil when current changes from $10 \mathrm{~A}$ to $2 \mathrm{~A}$ in time $0.1 \mathrm{~s}$, induced emf is $3.28 \mathrm{~V}$.
What is self-inductance of coil?

1 $4 \mathrm{H}$
2 $0.4 \mathrm{H}$
3 $0.04 \mathrm{H}$
4 $5 \mathrm{H}$
Electro Magnetic Induction

154821 Two long straight conductors with currents $I_{1}$ and $I_{2}$ are placed along $X$-axis and $Y$-axis as shown in figure. The equation of locus of zero magnetic induction is

1 $y=x$
2 $\mathrm{y}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \mathrm{x}$
3 $\mathrm{y}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \mathrm{x}$
4 $\mathrm{y}=\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{x}$