03. Inductance (Self and Mutual Induction)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154809 A short solenoid of length $4 \mathrm{~cm}$, radius $2 \mathrm{~cm}$ and 100 turn is placed inside and on the axis of a long solenoid of length $80 \mathrm{~cm}$ and 1500 turns. A current of $3 \mathrm{~A}$ flows through the short solenoid. The mutual inductance of two solenoids is

1 $2.96 \times 10^{-4} \mathrm{H}$
2 $5.3 \times 10^{-5} \mathrm{H}$
3 $3.52 \times 10^{-3} \mathrm{H}$
4 $8.3 \times 10^{-5} \mathrm{H}$
Electro Magnetic Induction

154810 If the self -inductance of 500 turns coil is $\mathbf{1 2 5}$ $\mathrm{mH}$, then the self inductance of similar coil of 800 turns is

1 $48.8 \mathrm{mH}$
2 $200 \mathrm{mH}$
3 $187.5 \mathrm{mH}$
4 $320 \mathrm{mH}$
5 $78.1 . \mathrm{mH}$
Electro Magnetic Induction

154811 A resistor $30 \Omega$, inductor of reactance $10 \Omega$ and capacitor of reactance $10 \Omega$ are connected in series to an AC voltage source $\varepsilon=$ $300 \sqrt{2} \sin (\omega t)$. The current in the circuit is

1 $10 \sqrt{2} \mathrm{~A}$
2 $10 \mathrm{~A}$
3 $30 \sqrt{11} \mathrm{~A}$
4 $30 / \sqrt{11} \mathrm{~A}$
5 $5 \mathrm{~A}$
Electro Magnetic Induction

154814 Find the inductance of a unit length of two parallel wires, each of radius a, whose centers are at distance d apart and carry equal currents in opposite directions. Neglect the flux within the wire.

1 $\frac{\mu_{0}}{2 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
2 $\frac{\mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
3 $\frac{3 \mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
4 $\frac{\mu_{0}}{3 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
Electro Magnetic Induction

154809 A short solenoid of length $4 \mathrm{~cm}$, radius $2 \mathrm{~cm}$ and 100 turn is placed inside and on the axis of a long solenoid of length $80 \mathrm{~cm}$ and 1500 turns. A current of $3 \mathrm{~A}$ flows through the short solenoid. The mutual inductance of two solenoids is

1 $2.96 \times 10^{-4} \mathrm{H}$
2 $5.3 \times 10^{-5} \mathrm{H}$
3 $3.52 \times 10^{-3} \mathrm{H}$
4 $8.3 \times 10^{-5} \mathrm{H}$
Electro Magnetic Induction

154810 If the self -inductance of 500 turns coil is $\mathbf{1 2 5}$ $\mathrm{mH}$, then the self inductance of similar coil of 800 turns is

1 $48.8 \mathrm{mH}$
2 $200 \mathrm{mH}$
3 $187.5 \mathrm{mH}$
4 $320 \mathrm{mH}$
5 $78.1 . \mathrm{mH}$
Electro Magnetic Induction

154811 A resistor $30 \Omega$, inductor of reactance $10 \Omega$ and capacitor of reactance $10 \Omega$ are connected in series to an AC voltage source $\varepsilon=$ $300 \sqrt{2} \sin (\omega t)$. The current in the circuit is

1 $10 \sqrt{2} \mathrm{~A}$
2 $10 \mathrm{~A}$
3 $30 \sqrt{11} \mathrm{~A}$
4 $30 / \sqrt{11} \mathrm{~A}$
5 $5 \mathrm{~A}$
Electro Magnetic Induction

154814 Find the inductance of a unit length of two parallel wires, each of radius a, whose centers are at distance d apart and carry equal currents in opposite directions. Neglect the flux within the wire.

1 $\frac{\mu_{0}}{2 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
2 $\frac{\mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
3 $\frac{3 \mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
4 $\frac{\mu_{0}}{3 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
Electro Magnetic Induction

154809 A short solenoid of length $4 \mathrm{~cm}$, radius $2 \mathrm{~cm}$ and 100 turn is placed inside and on the axis of a long solenoid of length $80 \mathrm{~cm}$ and 1500 turns. A current of $3 \mathrm{~A}$ flows through the short solenoid. The mutual inductance of two solenoids is

1 $2.96 \times 10^{-4} \mathrm{H}$
2 $5.3 \times 10^{-5} \mathrm{H}$
3 $3.52 \times 10^{-3} \mathrm{H}$
4 $8.3 \times 10^{-5} \mathrm{H}$
Electro Magnetic Induction

154810 If the self -inductance of 500 turns coil is $\mathbf{1 2 5}$ $\mathrm{mH}$, then the self inductance of similar coil of 800 turns is

1 $48.8 \mathrm{mH}$
2 $200 \mathrm{mH}$
3 $187.5 \mathrm{mH}$
4 $320 \mathrm{mH}$
5 $78.1 . \mathrm{mH}$
Electro Magnetic Induction

154811 A resistor $30 \Omega$, inductor of reactance $10 \Omega$ and capacitor of reactance $10 \Omega$ are connected in series to an AC voltage source $\varepsilon=$ $300 \sqrt{2} \sin (\omega t)$. The current in the circuit is

1 $10 \sqrt{2} \mathrm{~A}$
2 $10 \mathrm{~A}$
3 $30 \sqrt{11} \mathrm{~A}$
4 $30 / \sqrt{11} \mathrm{~A}$
5 $5 \mathrm{~A}$
Electro Magnetic Induction

154814 Find the inductance of a unit length of two parallel wires, each of radius a, whose centers are at distance d apart and carry equal currents in opposite directions. Neglect the flux within the wire.

1 $\frac{\mu_{0}}{2 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
2 $\frac{\mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
3 $\frac{3 \mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
4 $\frac{\mu_{0}}{3 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154809 A short solenoid of length $4 \mathrm{~cm}$, radius $2 \mathrm{~cm}$ and 100 turn is placed inside and on the axis of a long solenoid of length $80 \mathrm{~cm}$ and 1500 turns. A current of $3 \mathrm{~A}$ flows through the short solenoid. The mutual inductance of two solenoids is

1 $2.96 \times 10^{-4} \mathrm{H}$
2 $5.3 \times 10^{-5} \mathrm{H}$
3 $3.52 \times 10^{-3} \mathrm{H}$
4 $8.3 \times 10^{-5} \mathrm{H}$
Electro Magnetic Induction

154810 If the self -inductance of 500 turns coil is $\mathbf{1 2 5}$ $\mathrm{mH}$, then the self inductance of similar coil of 800 turns is

1 $48.8 \mathrm{mH}$
2 $200 \mathrm{mH}$
3 $187.5 \mathrm{mH}$
4 $320 \mathrm{mH}$
5 $78.1 . \mathrm{mH}$
Electro Magnetic Induction

154811 A resistor $30 \Omega$, inductor of reactance $10 \Omega$ and capacitor of reactance $10 \Omega$ are connected in series to an AC voltage source $\varepsilon=$ $300 \sqrt{2} \sin (\omega t)$. The current in the circuit is

1 $10 \sqrt{2} \mathrm{~A}$
2 $10 \mathrm{~A}$
3 $30 \sqrt{11} \mathrm{~A}$
4 $30 / \sqrt{11} \mathrm{~A}$
5 $5 \mathrm{~A}$
Electro Magnetic Induction

154814 Find the inductance of a unit length of two parallel wires, each of radius a, whose centers are at distance d apart and carry equal currents in opposite directions. Neglect the flux within the wire.

1 $\frac{\mu_{0}}{2 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
2 $\frac{\mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
3 $\frac{3 \mu_{0}}{\pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$
4 $\frac{\mu_{0}}{3 \pi} \ln \left(\frac{\mathrm{d}-\mathrm{a}}{\mathrm{a}}\right)$