06. Magnetic Dipole and Magnetic Moment Due to Current
Moving Charges & Magnetism

153915 If the dipole moment of a short bar magnet is 1.25 $A-m^{2}$, find the magnetic field on its axis at a distance of $0.5 \mathrm{~m}$ from the centre of the magnet.

1 $1.10 \times 10^{-4} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
2 $4.0 \times 10^{-2} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
3 $2.0 \times 10^{-6} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
4 $6.64 \times 10^{-8} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
Moving Charges & Magnetism

153916 An electron having charge ' $e$ ' is moving with a constant speed $v$ along a circle of radius $r$. Its magnetic moment will be

1 e $v \mathrm{r}$
2 $\frac{\mathrm{e} v \mathrm{r}}{2}$
3 $2 \pi \mathrm{rev}$
4 Zero
Moving Charges & Magnetism

153917 If a circular coil of radius $3 \mathrm{~cm}$ having 10 turns carries a current $0.2 \mathrm{~A}$, then magnetic moment of the coil is

1 $5.65 \times 10^{-3} \mathrm{Am}^{2}$
2 $6.56 \times 10^{-3} \mathrm{Am}^{2}$
3 $4 \times 10^{-3} \mathrm{Am}^{2}$
4 $3.5 \times 10^{-3} \mathrm{Am}^{2}$
Moving Charges & Magnetism

153919 An electron having charge ' $e$ ' revolves around the nucleus in a circular orbit of radius ' $r$ ' at a speed of ' $v$ '. Its magnetic moment is given by

1 $\frac{\text { erv }}{2}$
2 $\operatorname{er}^{2} v$
3 erv
4 $\frac{\text { erv }}{2 \pi}$
Moving Charges & Magnetism

153915 If the dipole moment of a short bar magnet is 1.25 $A-m^{2}$, find the magnetic field on its axis at a distance of $0.5 \mathrm{~m}$ from the centre of the magnet.

1 $1.10 \times 10^{-4} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
2 $4.0 \times 10^{-2} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
3 $2.0 \times 10^{-6} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
4 $6.64 \times 10^{-8} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
Moving Charges & Magnetism

153916 An electron having charge ' $e$ ' is moving with a constant speed $v$ along a circle of radius $r$. Its magnetic moment will be

1 e $v \mathrm{r}$
2 $\frac{\mathrm{e} v \mathrm{r}}{2}$
3 $2 \pi \mathrm{rev}$
4 Zero
Moving Charges & Magnetism

153917 If a circular coil of radius $3 \mathrm{~cm}$ having 10 turns carries a current $0.2 \mathrm{~A}$, then magnetic moment of the coil is

1 $5.65 \times 10^{-3} \mathrm{Am}^{2}$
2 $6.56 \times 10^{-3} \mathrm{Am}^{2}$
3 $4 \times 10^{-3} \mathrm{Am}^{2}$
4 $3.5 \times 10^{-3} \mathrm{Am}^{2}$
Moving Charges & Magnetism

153919 An electron having charge ' $e$ ' revolves around the nucleus in a circular orbit of radius ' $r$ ' at a speed of ' $v$ '. Its magnetic moment is given by

1 $\frac{\text { erv }}{2}$
2 $\operatorname{er}^{2} v$
3 erv
4 $\frac{\text { erv }}{2 \pi}$
Moving Charges & Magnetism

153915 If the dipole moment of a short bar magnet is 1.25 $A-m^{2}$, find the magnetic field on its axis at a distance of $0.5 \mathrm{~m}$ from the centre of the magnet.

1 $1.10 \times 10^{-4} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
2 $4.0 \times 10^{-2} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
3 $2.0 \times 10^{-6} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
4 $6.64 \times 10^{-8} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
Moving Charges & Magnetism

153916 An electron having charge ' $e$ ' is moving with a constant speed $v$ along a circle of radius $r$. Its magnetic moment will be

1 e $v \mathrm{r}$
2 $\frac{\mathrm{e} v \mathrm{r}}{2}$
3 $2 \pi \mathrm{rev}$
4 Zero
Moving Charges & Magnetism

153917 If a circular coil of radius $3 \mathrm{~cm}$ having 10 turns carries a current $0.2 \mathrm{~A}$, then magnetic moment of the coil is

1 $5.65 \times 10^{-3} \mathrm{Am}^{2}$
2 $6.56 \times 10^{-3} \mathrm{Am}^{2}$
3 $4 \times 10^{-3} \mathrm{Am}^{2}$
4 $3.5 \times 10^{-3} \mathrm{Am}^{2}$
Moving Charges & Magnetism

153919 An electron having charge ' $e$ ' revolves around the nucleus in a circular orbit of radius ' $r$ ' at a speed of ' $v$ '. Its magnetic moment is given by

1 $\frac{\text { erv }}{2}$
2 $\operatorname{er}^{2} v$
3 erv
4 $\frac{\text { erv }}{2 \pi}$
Moving Charges & Magnetism

153915 If the dipole moment of a short bar magnet is 1.25 $A-m^{2}$, find the magnetic field on its axis at a distance of $0.5 \mathrm{~m}$ from the centre of the magnet.

1 $1.10 \times 10^{-4} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
2 $4.0 \times 10^{-2} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
3 $2.0 \times 10^{-6} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
4 $6.64 \times 10^{-8} \mathrm{NA}^{-1} \mathrm{~m}^{-1}$
Moving Charges & Magnetism

153916 An electron having charge ' $e$ ' is moving with a constant speed $v$ along a circle of radius $r$. Its magnetic moment will be

1 e $v \mathrm{r}$
2 $\frac{\mathrm{e} v \mathrm{r}}{2}$
3 $2 \pi \mathrm{rev}$
4 Zero
Moving Charges & Magnetism

153917 If a circular coil of radius $3 \mathrm{~cm}$ having 10 turns carries a current $0.2 \mathrm{~A}$, then magnetic moment of the coil is

1 $5.65 \times 10^{-3} \mathrm{Am}^{2}$
2 $6.56 \times 10^{-3} \mathrm{Am}^{2}$
3 $4 \times 10^{-3} \mathrm{Am}^{2}$
4 $3.5 \times 10^{-3} \mathrm{Am}^{2}$
Moving Charges & Magnetism

153919 An electron having charge ' $e$ ' revolves around the nucleus in a circular orbit of radius ' $r$ ' at a speed of ' $v$ '. Its magnetic moment is given by

1 $\frac{\text { erv }}{2}$
2 $\operatorname{er}^{2} v$
3 erv
4 $\frac{\text { erv }}{2 \pi}$