06. Magnetic Dipole and Magnetic Moment Due to Current
Moving Charges & Magnetism

153920 Magnetic moment due to the motion of the electron in $\mathbf{n}^{\text {th }}$ energy state of hydrogen atom is proportional to .............

1 $\mathrm{n}^{-2}$
2 $n$
3 $\mathrm{n}^{2}$
4 $n^{3}$
Moving Charges & Magnetism

153921 A coil in the shape of an equilateral triangle of side $2 \mathrm{~cm}$ is suspended from a vertex such that its hangs in a vertical plane between the poles of a permanent magnet producing a horizontal magnetic field of $100 \times 10^{-3}$ T. The magnetic field is parallel to the plane of the coil. For the moment of couple acting on the coil to be $2 \sqrt{3} \times 10^{-5} \mathrm{Nm}$, the current to be passed through the coil is

1 $0.5 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $4 \mathrm{~A}$
Moving Charges & Magnetism

153922 The resultant magnetic moment of three magnetic dipoles, each of the magnetic moment $M$ shown in the arrangement is

1 $\sqrt{2} \mathrm{M}$
2 $(\sqrt{2}+1) \mathrm{M}$
3 $(\sqrt{2}-1) \mathrm{M}$
4 $\mathrm{M}$
Moving Charges & Magnetism

153923 Magnetic field at the centre of a circular loop of area $A$ is $B$. then the magnetic moment of the loop is ( $\mu_{0}$-permeability of the free space)

1 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
2 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0}}$
3 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \pi}$
4 $\frac{2 \mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \sqrt{\pi}}$
Moving Charges & Magnetism

153920 Magnetic moment due to the motion of the electron in $\mathbf{n}^{\text {th }}$ energy state of hydrogen atom is proportional to .............

1 $\mathrm{n}^{-2}$
2 $n$
3 $\mathrm{n}^{2}$
4 $n^{3}$
Moving Charges & Magnetism

153921 A coil in the shape of an equilateral triangle of side $2 \mathrm{~cm}$ is suspended from a vertex such that its hangs in a vertical plane between the poles of a permanent magnet producing a horizontal magnetic field of $100 \times 10^{-3}$ T. The magnetic field is parallel to the plane of the coil. For the moment of couple acting on the coil to be $2 \sqrt{3} \times 10^{-5} \mathrm{Nm}$, the current to be passed through the coil is

1 $0.5 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $4 \mathrm{~A}$
Moving Charges & Magnetism

153922 The resultant magnetic moment of three magnetic dipoles, each of the magnetic moment $M$ shown in the arrangement is

1 $\sqrt{2} \mathrm{M}$
2 $(\sqrt{2}+1) \mathrm{M}$
3 $(\sqrt{2}-1) \mathrm{M}$
4 $\mathrm{M}$
Moving Charges & Magnetism

153923 Magnetic field at the centre of a circular loop of area $A$ is $B$. then the magnetic moment of the loop is ( $\mu_{0}$-permeability of the free space)

1 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
2 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0}}$
3 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \pi}$
4 $\frac{2 \mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \sqrt{\pi}}$
Moving Charges & Magnetism

153920 Magnetic moment due to the motion of the electron in $\mathbf{n}^{\text {th }}$ energy state of hydrogen atom is proportional to .............

1 $\mathrm{n}^{-2}$
2 $n$
3 $\mathrm{n}^{2}$
4 $n^{3}$
Moving Charges & Magnetism

153921 A coil in the shape of an equilateral triangle of side $2 \mathrm{~cm}$ is suspended from a vertex such that its hangs in a vertical plane between the poles of a permanent magnet producing a horizontal magnetic field of $100 \times 10^{-3}$ T. The magnetic field is parallel to the plane of the coil. For the moment of couple acting on the coil to be $2 \sqrt{3} \times 10^{-5} \mathrm{Nm}$, the current to be passed through the coil is

1 $0.5 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $4 \mathrm{~A}$
Moving Charges & Magnetism

153922 The resultant magnetic moment of three magnetic dipoles, each of the magnetic moment $M$ shown in the arrangement is

1 $\sqrt{2} \mathrm{M}$
2 $(\sqrt{2}+1) \mathrm{M}$
3 $(\sqrt{2}-1) \mathrm{M}$
4 $\mathrm{M}$
Moving Charges & Magnetism

153923 Magnetic field at the centre of a circular loop of area $A$ is $B$. then the magnetic moment of the loop is ( $\mu_{0}$-permeability of the free space)

1 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
2 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0}}$
3 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \pi}$
4 $\frac{2 \mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \sqrt{\pi}}$
Moving Charges & Magnetism

153920 Magnetic moment due to the motion of the electron in $\mathbf{n}^{\text {th }}$ energy state of hydrogen atom is proportional to .............

1 $\mathrm{n}^{-2}$
2 $n$
3 $\mathrm{n}^{2}$
4 $n^{3}$
Moving Charges & Magnetism

153921 A coil in the shape of an equilateral triangle of side $2 \mathrm{~cm}$ is suspended from a vertex such that its hangs in a vertical plane between the poles of a permanent magnet producing a horizontal magnetic field of $100 \times 10^{-3}$ T. The magnetic field is parallel to the plane of the coil. For the moment of couple acting on the coil to be $2 \sqrt{3} \times 10^{-5} \mathrm{Nm}$, the current to be passed through the coil is

1 $0.5 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $4 \mathrm{~A}$
Moving Charges & Magnetism

153922 The resultant magnetic moment of three magnetic dipoles, each of the magnetic moment $M$ shown in the arrangement is

1 $\sqrt{2} \mathrm{M}$
2 $(\sqrt{2}+1) \mathrm{M}$
3 $(\sqrt{2}-1) \mathrm{M}$
4 $\mathrm{M}$
Moving Charges & Magnetism

153923 Magnetic field at the centre of a circular loop of area $A$ is $B$. then the magnetic moment of the loop is ( $\mu_{0}$-permeability of the free space)

1 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
2 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0}}$
3 $\frac{\mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \pi}$
4 $\frac{2 \mathrm{BA} \sqrt{\mathrm{A}}}{\mu_{0} \sqrt{\pi}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here