03. Motion of Charge Particle in Combined of Electric and Magnetic Field
Moving Charges & Magnetism

153737 A force $\vec{F}$, acting on an electric charge $q$, in presence of an electromagnetic field, moves the charge parallel to the magnetic field with velocity $\vec{v}$. Then $\vec{F}$ is equal to (where $\vec{E}$ and $\vec{B}$ are electric field and magnetic field respectively)

1 $\mathrm{q} \overrightarrow{\mathrm{E}}$
2 $\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
3 $q(\vec{v} \times \vec{E})$
4 $q \overrightarrow{\mathrm{B}}$
Moving Charges & Magnetism

153698 A charged particle carrying a charge ' $q$ ' and moving with velocity $v$, enters into a solenoid carrying a current $I$, along its axis. If ' $B$ ' is the magnetic induction along the axis of solenoid, then the force ' $F$ ' acting on the charged particle will be

1 $\mathrm{F}>$ qvB
2 $\mathrm{F}=\mathrm{qvB}$
3 $\mathrm{F}\lt\mathrm{qvB}$
4 $\mathrm{F}=0$
Moving Charges & Magnetism

153691 Given below are two statements:
Statement I: The electric force changes the speed of the charged particle and hence changes its kinetic energy; Whereas the magnetic force does not change the kinetic energy of the charged particle.
Statement II : the electric force accelerates the positively charged perpendicular to the direction of electric field. The magnetic force accelerates the moving charged particle along the direction of magnetic field.
In the light of the above statement, choose the most appropriate answer from the options given below:

1 Both statement I and statement II are correct
2 Both statement I and statement II are incorrect
3 Statement I is correct but statement II is incorrect
4 statement I is incorrect but statement II is correct
Moving Charges & Magnetism

153693 The magnetic field of a plane electromagnetic wave is given by
$\vec{B}=2 \times 10^{-8} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
The amplitude of the electric field would be

1 $6 \mathrm{Vm}^{-1}$ along $\mathrm{x}$-axis
2 $3 \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
3 $6 \mathrm{Vm}^{-1}$ along z-axis
4 $2 \times 10^{-8} \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
Moving Charges & Magnetism

153695 The electric and the magnetic fields associated with an electromagnetic wave propagating along the $\mathrm{Z}$-axis, can be represented by-

1 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{i}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{j}}\right]\)
2 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
3 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0, \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
4 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{k}}\right]\)
Moving Charges & Magnetism

153737 A force $\vec{F}$, acting on an electric charge $q$, in presence of an electromagnetic field, moves the charge parallel to the magnetic field with velocity $\vec{v}$. Then $\vec{F}$ is equal to (where $\vec{E}$ and $\vec{B}$ are electric field and magnetic field respectively)

1 $\mathrm{q} \overrightarrow{\mathrm{E}}$
2 $\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
3 $q(\vec{v} \times \vec{E})$
4 $q \overrightarrow{\mathrm{B}}$
Moving Charges & Magnetism

153698 A charged particle carrying a charge ' $q$ ' and moving with velocity $v$, enters into a solenoid carrying a current $I$, along its axis. If ' $B$ ' is the magnetic induction along the axis of solenoid, then the force ' $F$ ' acting on the charged particle will be

1 $\mathrm{F}>$ qvB
2 $\mathrm{F}=\mathrm{qvB}$
3 $\mathrm{F}\lt\mathrm{qvB}$
4 $\mathrm{F}=0$
Moving Charges & Magnetism

153691 Given below are two statements:
Statement I: The electric force changes the speed of the charged particle and hence changes its kinetic energy; Whereas the magnetic force does not change the kinetic energy of the charged particle.
Statement II : the electric force accelerates the positively charged perpendicular to the direction of electric field. The magnetic force accelerates the moving charged particle along the direction of magnetic field.
In the light of the above statement, choose the most appropriate answer from the options given below:

1 Both statement I and statement II are correct
2 Both statement I and statement II are incorrect
3 Statement I is correct but statement II is incorrect
4 statement I is incorrect but statement II is correct
Moving Charges & Magnetism

153693 The magnetic field of a plane electromagnetic wave is given by
$\vec{B}=2 \times 10^{-8} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
The amplitude of the electric field would be

1 $6 \mathrm{Vm}^{-1}$ along $\mathrm{x}$-axis
2 $3 \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
3 $6 \mathrm{Vm}^{-1}$ along z-axis
4 $2 \times 10^{-8} \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
Moving Charges & Magnetism

153695 The electric and the magnetic fields associated with an electromagnetic wave propagating along the $\mathrm{Z}$-axis, can be represented by-

1 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{i}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{j}}\right]\)
2 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
3 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0, \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
4 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{k}}\right]\)
Moving Charges & Magnetism

153737 A force $\vec{F}$, acting on an electric charge $q$, in presence of an electromagnetic field, moves the charge parallel to the magnetic field with velocity $\vec{v}$. Then $\vec{F}$ is equal to (where $\vec{E}$ and $\vec{B}$ are electric field and magnetic field respectively)

1 $\mathrm{q} \overrightarrow{\mathrm{E}}$
2 $\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
3 $q(\vec{v} \times \vec{E})$
4 $q \overrightarrow{\mathrm{B}}$
Moving Charges & Magnetism

153698 A charged particle carrying a charge ' $q$ ' and moving with velocity $v$, enters into a solenoid carrying a current $I$, along its axis. If ' $B$ ' is the magnetic induction along the axis of solenoid, then the force ' $F$ ' acting on the charged particle will be

1 $\mathrm{F}>$ qvB
2 $\mathrm{F}=\mathrm{qvB}$
3 $\mathrm{F}\lt\mathrm{qvB}$
4 $\mathrm{F}=0$
Moving Charges & Magnetism

153691 Given below are two statements:
Statement I: The electric force changes the speed of the charged particle and hence changes its kinetic energy; Whereas the magnetic force does not change the kinetic energy of the charged particle.
Statement II : the electric force accelerates the positively charged perpendicular to the direction of electric field. The magnetic force accelerates the moving charged particle along the direction of magnetic field.
In the light of the above statement, choose the most appropriate answer from the options given below:

1 Both statement I and statement II are correct
2 Both statement I and statement II are incorrect
3 Statement I is correct but statement II is incorrect
4 statement I is incorrect but statement II is correct
Moving Charges & Magnetism

153693 The magnetic field of a plane electromagnetic wave is given by
$\vec{B}=2 \times 10^{-8} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
The amplitude of the electric field would be

1 $6 \mathrm{Vm}^{-1}$ along $\mathrm{x}$-axis
2 $3 \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
3 $6 \mathrm{Vm}^{-1}$ along z-axis
4 $2 \times 10^{-8} \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
Moving Charges & Magnetism

153695 The electric and the magnetic fields associated with an electromagnetic wave propagating along the $\mathrm{Z}$-axis, can be represented by-

1 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{i}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{j}}\right]\)
2 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
3 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0, \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
4 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{k}}\right]\)
Moving Charges & Magnetism

153737 A force $\vec{F}$, acting on an electric charge $q$, in presence of an electromagnetic field, moves the charge parallel to the magnetic field with velocity $\vec{v}$. Then $\vec{F}$ is equal to (where $\vec{E}$ and $\vec{B}$ are electric field and magnetic field respectively)

1 $\mathrm{q} \overrightarrow{\mathrm{E}}$
2 $\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
3 $q(\vec{v} \times \vec{E})$
4 $q \overrightarrow{\mathrm{B}}$
Moving Charges & Magnetism

153698 A charged particle carrying a charge ' $q$ ' and moving with velocity $v$, enters into a solenoid carrying a current $I$, along its axis. If ' $B$ ' is the magnetic induction along the axis of solenoid, then the force ' $F$ ' acting on the charged particle will be

1 $\mathrm{F}>$ qvB
2 $\mathrm{F}=\mathrm{qvB}$
3 $\mathrm{F}\lt\mathrm{qvB}$
4 $\mathrm{F}=0$
Moving Charges & Magnetism

153691 Given below are two statements:
Statement I: The electric force changes the speed of the charged particle and hence changes its kinetic energy; Whereas the magnetic force does not change the kinetic energy of the charged particle.
Statement II : the electric force accelerates the positively charged perpendicular to the direction of electric field. The magnetic force accelerates the moving charged particle along the direction of magnetic field.
In the light of the above statement, choose the most appropriate answer from the options given below:

1 Both statement I and statement II are correct
2 Both statement I and statement II are incorrect
3 Statement I is correct but statement II is incorrect
4 statement I is incorrect but statement II is correct
Moving Charges & Magnetism

153693 The magnetic field of a plane electromagnetic wave is given by
$\vec{B}=2 \times 10^{-8} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
The amplitude of the electric field would be

1 $6 \mathrm{Vm}^{-1}$ along $\mathrm{x}$-axis
2 $3 \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
3 $6 \mathrm{Vm}^{-1}$ along z-axis
4 $2 \times 10^{-8} \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
Moving Charges & Magnetism

153695 The electric and the magnetic fields associated with an electromagnetic wave propagating along the $\mathrm{Z}$-axis, can be represented by-

1 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{i}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{j}}\right]\)
2 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
3 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0, \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
4 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{k}}\right]\)
Moving Charges & Magnetism

153737 A force $\vec{F}$, acting on an electric charge $q$, in presence of an electromagnetic field, moves the charge parallel to the magnetic field with velocity $\vec{v}$. Then $\vec{F}$ is equal to (where $\vec{E}$ and $\vec{B}$ are electric field and magnetic field respectively)

1 $\mathrm{q} \overrightarrow{\mathrm{E}}$
2 $\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
3 $q(\vec{v} \times \vec{E})$
4 $q \overrightarrow{\mathrm{B}}$
Moving Charges & Magnetism

153698 A charged particle carrying a charge ' $q$ ' and moving with velocity $v$, enters into a solenoid carrying a current $I$, along its axis. If ' $B$ ' is the magnetic induction along the axis of solenoid, then the force ' $F$ ' acting on the charged particle will be

1 $\mathrm{F}>$ qvB
2 $\mathrm{F}=\mathrm{qvB}$
3 $\mathrm{F}\lt\mathrm{qvB}$
4 $\mathrm{F}=0$
Moving Charges & Magnetism

153691 Given below are two statements:
Statement I: The electric force changes the speed of the charged particle and hence changes its kinetic energy; Whereas the magnetic force does not change the kinetic energy of the charged particle.
Statement II : the electric force accelerates the positively charged perpendicular to the direction of electric field. The magnetic force accelerates the moving charged particle along the direction of magnetic field.
In the light of the above statement, choose the most appropriate answer from the options given below:

1 Both statement I and statement II are correct
2 Both statement I and statement II are incorrect
3 Statement I is correct but statement II is incorrect
4 statement I is incorrect but statement II is correct
Moving Charges & Magnetism

153693 The magnetic field of a plane electromagnetic wave is given by
$\vec{B}=2 \times 10^{-8} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{j} T}$
The amplitude of the electric field would be

1 $6 \mathrm{Vm}^{-1}$ along $\mathrm{x}$-axis
2 $3 \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
3 $6 \mathrm{Vm}^{-1}$ along z-axis
4 $2 \times 10^{-8} \mathrm{Vm}^{-1}$ along $\mathrm{z}$-axis
Moving Charges & Magnetism

153695 The electric and the magnetic fields associated with an electromagnetic wave propagating along the $\mathrm{Z}$-axis, can be represented by-

1 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{i}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{j}}\right]\)
2 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
3 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0, \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{i}}\right]\)
4 \(\left[\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{j}}, \overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{k}}\right]\)