153733
Match the following
|(1) Magnetic flux|(A) \(-\mathrm{N} \frac{\mathrm{d} \phi}{\mathrm{dt}}\) linked with a coil|
|
|(2) Induced emf|(B) \(\mu_{\mathrm{r}} \mu_0 \mathrm{n}_1 \mathrm{n}_2 \pi \mathrm{r}_1 2 \mathrm{l}\)|
|(3) Force on a charged|(C) \(\mathrm{BA} \cos \theta\) particle moving in a electric and magnetic field|
|(4) Mutual inductance|(D) \(q(\vec{E}+\vec{v} \times \vec{B})\) of a solenoid|
153734 A long horizontal rigidly supported wire carries a current $i_{\mathrm{a}}=96 \mathrm{~A}$. Directly above it and parallel to it at a distance, another wire of $0.144 \mathrm{~N}$ weight per metre carrying a current $i_{\mathrm{b}}=24 \mathrm{~A}$. If the upper wire is to float in air due to magnetic repulsion, then its distance (in $\mathrm{mm}$ ) from the lower wire is:
153733
Match the following
|(1) Magnetic flux|(A) \(-\mathrm{N} \frac{\mathrm{d} \phi}{\mathrm{dt}}\) linked with a coil|
|
|(2) Induced emf|(B) \(\mu_{\mathrm{r}} \mu_0 \mathrm{n}_1 \mathrm{n}_2 \pi \mathrm{r}_1 2 \mathrm{l}\)|
|(3) Force on a charged|(C) \(\mathrm{BA} \cos \theta\) particle moving in a electric and magnetic field|
|(4) Mutual inductance|(D) \(q(\vec{E}+\vec{v} \times \vec{B})\) of a solenoid|
153734 A long horizontal rigidly supported wire carries a current $i_{\mathrm{a}}=96 \mathrm{~A}$. Directly above it and parallel to it at a distance, another wire of $0.144 \mathrm{~N}$ weight per metre carrying a current $i_{\mathrm{b}}=24 \mathrm{~A}$. If the upper wire is to float in air due to magnetic repulsion, then its distance (in $\mathrm{mm}$ ) from the lower wire is:
153733
Match the following
|(1) Magnetic flux|(A) \(-\mathrm{N} \frac{\mathrm{d} \phi}{\mathrm{dt}}\) linked with a coil|
|
|(2) Induced emf|(B) \(\mu_{\mathrm{r}} \mu_0 \mathrm{n}_1 \mathrm{n}_2 \pi \mathrm{r}_1 2 \mathrm{l}\)|
|(3) Force on a charged|(C) \(\mathrm{BA} \cos \theta\) particle moving in a electric and magnetic field|
|(4) Mutual inductance|(D) \(q(\vec{E}+\vec{v} \times \vec{B})\) of a solenoid|
153734 A long horizontal rigidly supported wire carries a current $i_{\mathrm{a}}=96 \mathrm{~A}$. Directly above it and parallel to it at a distance, another wire of $0.144 \mathrm{~N}$ weight per metre carrying a current $i_{\mathrm{b}}=24 \mathrm{~A}$. If the upper wire is to float in air due to magnetic repulsion, then its distance (in $\mathrm{mm}$ ) from the lower wire is:
153733
Match the following
|(1) Magnetic flux|(A) \(-\mathrm{N} \frac{\mathrm{d} \phi}{\mathrm{dt}}\) linked with a coil|
|
|(2) Induced emf|(B) \(\mu_{\mathrm{r}} \mu_0 \mathrm{n}_1 \mathrm{n}_2 \pi \mathrm{r}_1 2 \mathrm{l}\)|
|(3) Force on a charged|(C) \(\mathrm{BA} \cos \theta\) particle moving in a electric and magnetic field|
|(4) Mutual inductance|(D) \(q(\vec{E}+\vec{v} \times \vec{B})\) of a solenoid|
153734 A long horizontal rigidly supported wire carries a current $i_{\mathrm{a}}=96 \mathrm{~A}$. Directly above it and parallel to it at a distance, another wire of $0.144 \mathrm{~N}$ weight per metre carrying a current $i_{\mathrm{b}}=24 \mathrm{~A}$. If the upper wire is to float in air due to magnetic repulsion, then its distance (in $\mathrm{mm}$ ) from the lower wire is: