02. Motion of Charge Particle in Magnetic Field
Moving Charges & Magnetism

153600 An $\alpha$-particle with a specific charge of $2.5 \times 10^{7}$ $\mathrm{C} \mathrm{kg} \mathrm{g}^{-1}$ moves with a speed of $2 \times 10^{5} \mathrm{~ms}^{-1}$ in a perpendicular magnetic field of $0.05 \mathrm{~T}$. Then the radius of the circular path described by it is:

1 $8 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $16 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
5 $32 \mathrm{~cm}$
Moving Charges & Magnetism

153602 A charge $q$ coulomb makes $n$ revolutions in one second in a circular orbit of radius $r$. The magnetic field at the centre of the orbit in $\mathrm{NA}^{-}$ ${ }^{1} \mathbf{m}^{-1}$ is

1 $\frac{2 \pi \mathrm{rn}}{\mathrm{q}} \times 10^{-7}$
2 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{r}}\right) \times 10^{-7}$
3 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{nr}}\right) \times 10^{-7}$
4 $\left(\frac{2 \pi \mathrm{nq}}{\mathrm{r}}\right) \times 10^{-7}$
Moving Charges & Magnetism

153604 A positively charged particle moving with velocity $v$ enters a region of space having a uniform magnetic field $B$. The particle will experience the large deflecting force, when the angle between $v$ and $B$ is :

1 $0^{0}$
2 $45^{0}$
3 $90^{\circ}$
4 $180^{\circ}$
Moving Charges & Magnetism

153607 A long straight wire carries a certain current and produces a magnetic field $2 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ at a perpendicular distance of $5 \mathrm{~cm}$ from the wire. An electron situated at $5 \mathrm{~cm}$ from the wire moves with a velocity $10^{7} \mathrm{~m} / \mathrm{s}$ towards the wire along perpendicular to it. The force experienced by the electron will be (charge on electron $1.6 \times 10^{-19} \mathrm{C}$ )

1 $3.2 \mathrm{~N}$
2 $3.2 \times 10^{-16} \mathrm{~N}$
3 $1.6 \times 10^{-6} \mathrm{~N}$
4 zero
Moving Charges & Magnetism

153600 An $\alpha$-particle with a specific charge of $2.5 \times 10^{7}$ $\mathrm{C} \mathrm{kg} \mathrm{g}^{-1}$ moves with a speed of $2 \times 10^{5} \mathrm{~ms}^{-1}$ in a perpendicular magnetic field of $0.05 \mathrm{~T}$. Then the radius of the circular path described by it is:

1 $8 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $16 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
5 $32 \mathrm{~cm}$
Moving Charges & Magnetism

153602 A charge $q$ coulomb makes $n$ revolutions in one second in a circular orbit of radius $r$. The magnetic field at the centre of the orbit in $\mathrm{NA}^{-}$ ${ }^{1} \mathbf{m}^{-1}$ is

1 $\frac{2 \pi \mathrm{rn}}{\mathrm{q}} \times 10^{-7}$
2 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{r}}\right) \times 10^{-7}$
3 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{nr}}\right) \times 10^{-7}$
4 $\left(\frac{2 \pi \mathrm{nq}}{\mathrm{r}}\right) \times 10^{-7}$
Moving Charges & Magnetism

153604 A positively charged particle moving with velocity $v$ enters a region of space having a uniform magnetic field $B$. The particle will experience the large deflecting force, when the angle between $v$ and $B$ is :

1 $0^{0}$
2 $45^{0}$
3 $90^{\circ}$
4 $180^{\circ}$
Moving Charges & Magnetism

153607 A long straight wire carries a certain current and produces a magnetic field $2 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ at a perpendicular distance of $5 \mathrm{~cm}$ from the wire. An electron situated at $5 \mathrm{~cm}$ from the wire moves with a velocity $10^{7} \mathrm{~m} / \mathrm{s}$ towards the wire along perpendicular to it. The force experienced by the electron will be (charge on electron $1.6 \times 10^{-19} \mathrm{C}$ )

1 $3.2 \mathrm{~N}$
2 $3.2 \times 10^{-16} \mathrm{~N}$
3 $1.6 \times 10^{-6} \mathrm{~N}$
4 zero
Moving Charges & Magnetism

153600 An $\alpha$-particle with a specific charge of $2.5 \times 10^{7}$ $\mathrm{C} \mathrm{kg} \mathrm{g}^{-1}$ moves with a speed of $2 \times 10^{5} \mathrm{~ms}^{-1}$ in a perpendicular magnetic field of $0.05 \mathrm{~T}$. Then the radius of the circular path described by it is:

1 $8 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $16 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
5 $32 \mathrm{~cm}$
Moving Charges & Magnetism

153602 A charge $q$ coulomb makes $n$ revolutions in one second in a circular orbit of radius $r$. The magnetic field at the centre of the orbit in $\mathrm{NA}^{-}$ ${ }^{1} \mathbf{m}^{-1}$ is

1 $\frac{2 \pi \mathrm{rn}}{\mathrm{q}} \times 10^{-7}$
2 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{r}}\right) \times 10^{-7}$
3 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{nr}}\right) \times 10^{-7}$
4 $\left(\frac{2 \pi \mathrm{nq}}{\mathrm{r}}\right) \times 10^{-7}$
Moving Charges & Magnetism

153604 A positively charged particle moving with velocity $v$ enters a region of space having a uniform magnetic field $B$. The particle will experience the large deflecting force, when the angle between $v$ and $B$ is :

1 $0^{0}$
2 $45^{0}$
3 $90^{\circ}$
4 $180^{\circ}$
Moving Charges & Magnetism

153607 A long straight wire carries a certain current and produces a magnetic field $2 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ at a perpendicular distance of $5 \mathrm{~cm}$ from the wire. An electron situated at $5 \mathrm{~cm}$ from the wire moves with a velocity $10^{7} \mathrm{~m} / \mathrm{s}$ towards the wire along perpendicular to it. The force experienced by the electron will be (charge on electron $1.6 \times 10^{-19} \mathrm{C}$ )

1 $3.2 \mathrm{~N}$
2 $3.2 \times 10^{-16} \mathrm{~N}$
3 $1.6 \times 10^{-6} \mathrm{~N}$
4 zero
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153600 An $\alpha$-particle with a specific charge of $2.5 \times 10^{7}$ $\mathrm{C} \mathrm{kg} \mathrm{g}^{-1}$ moves with a speed of $2 \times 10^{5} \mathrm{~ms}^{-1}$ in a perpendicular magnetic field of $0.05 \mathrm{~T}$. Then the radius of the circular path described by it is:

1 $8 \mathrm{~cm}$
2 $4 \mathrm{~cm}$
3 $16 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
5 $32 \mathrm{~cm}$
Moving Charges & Magnetism

153602 A charge $q$ coulomb makes $n$ revolutions in one second in a circular orbit of radius $r$. The magnetic field at the centre of the orbit in $\mathrm{NA}^{-}$ ${ }^{1} \mathbf{m}^{-1}$ is

1 $\frac{2 \pi \mathrm{rn}}{\mathrm{q}} \times 10^{-7}$
2 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{r}}\right) \times 10^{-7}$
3 $\left(\frac{2 \pi \mathrm{q}}{\mathrm{nr}}\right) \times 10^{-7}$
4 $\left(\frac{2 \pi \mathrm{nq}}{\mathrm{r}}\right) \times 10^{-7}$
Moving Charges & Magnetism

153604 A positively charged particle moving with velocity $v$ enters a region of space having a uniform magnetic field $B$. The particle will experience the large deflecting force, when the angle between $v$ and $B$ is :

1 $0^{0}$
2 $45^{0}$
3 $90^{\circ}$
4 $180^{\circ}$
Moving Charges & Magnetism

153607 A long straight wire carries a certain current and produces a magnetic field $2 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ at a perpendicular distance of $5 \mathrm{~cm}$ from the wire. An electron situated at $5 \mathrm{~cm}$ from the wire moves with a velocity $10^{7} \mathrm{~m} / \mathrm{s}$ towards the wire along perpendicular to it. The force experienced by the electron will be (charge on electron $1.6 \times 10^{-19} \mathrm{C}$ )

1 $3.2 \mathrm{~N}$
2 $3.2 \times 10^{-16} \mathrm{~N}$
3 $1.6 \times 10^{-6} \mathrm{~N}$
4 zero