02. Motion of Charge Particle in Magnetic Field
Moving Charges & Magnetism

153595 A wire shown in figure carries a current of 40 A. If $r=3.14 \mathrm{~cm}$, the magnetic field at point $P$ will be :

1 $1.6 \times 10^{-3} \mathrm{~T}$
2 $3.2 \times 10^{-2} \mathrm{~T}$
3 $4.8 \times 10^{-3} \mathrm{~T}$
4 $6.0 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153596 The Magnetic field at the centre of a current carrying circular loop is $B$. If the radius of the loop is doubled, keeping the current same, the magnetic field at the centre of the loop would be:

1 $\frac{\mathrm{B}}{4}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $4 \mathrm{~B}$
Moving Charges & Magnetism

153597 An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of the these particles are respectively $R_{e}, R_{p}, R_{d}$ and $R_{\alpha}$. It follows that :

1 $R_{\mathrm{e}}=\mathrm{R}_{\mathrm{p}}$
2 $R_{\mathrm{p}}=\mathrm{R}_{\mathrm{d}}$
3 $R_{d}=R_{\alpha}$
4 $R_{\mathrm{p}}=\mathrm{R}_{\alpha}$
Moving Charges & Magnetism

153598 A $2 \mu \mathrm{C}$ charge moving around a circle with a frequency of $6.25 \times 10^{12} \mathrm{~Hz}$ produces $\mathrm{a}$ magnetic field $6.28 \mathrm{~T}$ at the centre of the circle. The radius of the circle is

1 $2.25 \mathrm{~m}$
2 $0.25 \mathrm{~m}$
3 $13.0 \mathrm{~m}$
4 $1.25 \mathrm{~m}$
5 $3.25 \mathrm{~m}$
Moving Charges & Magnetism

153595 A wire shown in figure carries a current of 40 A. If $r=3.14 \mathrm{~cm}$, the magnetic field at point $P$ will be :

1 $1.6 \times 10^{-3} \mathrm{~T}$
2 $3.2 \times 10^{-2} \mathrm{~T}$
3 $4.8 \times 10^{-3} \mathrm{~T}$
4 $6.0 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153596 The Magnetic field at the centre of a current carrying circular loop is $B$. If the radius of the loop is doubled, keeping the current same, the magnetic field at the centre of the loop would be:

1 $\frac{\mathrm{B}}{4}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $4 \mathrm{~B}$
Moving Charges & Magnetism

153597 An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of the these particles are respectively $R_{e}, R_{p}, R_{d}$ and $R_{\alpha}$. It follows that :

1 $R_{\mathrm{e}}=\mathrm{R}_{\mathrm{p}}$
2 $R_{\mathrm{p}}=\mathrm{R}_{\mathrm{d}}$
3 $R_{d}=R_{\alpha}$
4 $R_{\mathrm{p}}=\mathrm{R}_{\alpha}$
Moving Charges & Magnetism

153598 A $2 \mu \mathrm{C}$ charge moving around a circle with a frequency of $6.25 \times 10^{12} \mathrm{~Hz}$ produces $\mathrm{a}$ magnetic field $6.28 \mathrm{~T}$ at the centre of the circle. The radius of the circle is

1 $2.25 \mathrm{~m}$
2 $0.25 \mathrm{~m}$
3 $13.0 \mathrm{~m}$
4 $1.25 \mathrm{~m}$
5 $3.25 \mathrm{~m}$
Moving Charges & Magnetism

153595 A wire shown in figure carries a current of 40 A. If $r=3.14 \mathrm{~cm}$, the magnetic field at point $P$ will be :

1 $1.6 \times 10^{-3} \mathrm{~T}$
2 $3.2 \times 10^{-2} \mathrm{~T}$
3 $4.8 \times 10^{-3} \mathrm{~T}$
4 $6.0 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153596 The Magnetic field at the centre of a current carrying circular loop is $B$. If the radius of the loop is doubled, keeping the current same, the magnetic field at the centre of the loop would be:

1 $\frac{\mathrm{B}}{4}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $4 \mathrm{~B}$
Moving Charges & Magnetism

153597 An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of the these particles are respectively $R_{e}, R_{p}, R_{d}$ and $R_{\alpha}$. It follows that :

1 $R_{\mathrm{e}}=\mathrm{R}_{\mathrm{p}}$
2 $R_{\mathrm{p}}=\mathrm{R}_{\mathrm{d}}$
3 $R_{d}=R_{\alpha}$
4 $R_{\mathrm{p}}=\mathrm{R}_{\alpha}$
Moving Charges & Magnetism

153598 A $2 \mu \mathrm{C}$ charge moving around a circle with a frequency of $6.25 \times 10^{12} \mathrm{~Hz}$ produces $\mathrm{a}$ magnetic field $6.28 \mathrm{~T}$ at the centre of the circle. The radius of the circle is

1 $2.25 \mathrm{~m}$
2 $0.25 \mathrm{~m}$
3 $13.0 \mathrm{~m}$
4 $1.25 \mathrm{~m}$
5 $3.25 \mathrm{~m}$
Moving Charges & Magnetism

153595 A wire shown in figure carries a current of 40 A. If $r=3.14 \mathrm{~cm}$, the magnetic field at point $P$ will be :

1 $1.6 \times 10^{-3} \mathrm{~T}$
2 $3.2 \times 10^{-2} \mathrm{~T}$
3 $4.8 \times 10^{-3} \mathrm{~T}$
4 $6.0 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153596 The Magnetic field at the centre of a current carrying circular loop is $B$. If the radius of the loop is doubled, keeping the current same, the magnetic field at the centre of the loop would be:

1 $\frac{\mathrm{B}}{4}$
2 $\frac{B}{2}$
3 $2 \mathrm{~B}$
4 $4 \mathrm{~B}$
Moving Charges & Magnetism

153597 An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of the these particles are respectively $R_{e}, R_{p}, R_{d}$ and $R_{\alpha}$. It follows that :

1 $R_{\mathrm{e}}=\mathrm{R}_{\mathrm{p}}$
2 $R_{\mathrm{p}}=\mathrm{R}_{\mathrm{d}}$
3 $R_{d}=R_{\alpha}$
4 $R_{\mathrm{p}}=\mathrm{R}_{\alpha}$
Moving Charges & Magnetism

153598 A $2 \mu \mathrm{C}$ charge moving around a circle with a frequency of $6.25 \times 10^{12} \mathrm{~Hz}$ produces $\mathrm{a}$ magnetic field $6.28 \mathrm{~T}$ at the centre of the circle. The radius of the circle is

1 $2.25 \mathrm{~m}$
2 $0.25 \mathrm{~m}$
3 $13.0 \mathrm{~m}$
4 $1.25 \mathrm{~m}$
5 $3.25 \mathrm{~m}$