02. Motion of Charge Particle in Magnetic Field
Moving Charges & Magnetism

153528 A proton, a deuteron and $\alpha$ particle accelerated through the same potential difference enter the region of uniform magnetic field, moving at right angles to magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 1$
2 $1: 1: 2$
3 $2: 1: 2$
4 $2: 2: 1$
Moving Charges & Magnetism

153529 An electron of charge ' $e$ ' and mass ' $m$ ' is accelerated through a potential difference of ' $V$ ' volt. It enters a transverse uniform magnetic field ' $B$ ' and describes a circular path. The radius of the circular path is

1 $\frac{\mathrm{mV}}{\mathrm{eB}}$
2 $\sqrt{\frac{\mathrm{mV}}{\mathrm{eB}}}$
3 $\frac{1}{\mathrm{~B}} \sqrt{\frac{\mathrm{mV}}{\mathrm{e}}}$
4 $\frac{1}{\mathrm{~B}} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{e}}}$
Moving Charges & Magnetism

153530 An electron moves with a speed of $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ along the positive $x$-direction in a magnetic field $\vec{B}=(\hat{i}-4 \hat{j}-3 \hat{k}) T$. The magnitude of the force (in Newton) experienced by the electron is

1 $1.18 \times 10^{-13}$
2 $1.28 \times 10^{-13}$
3 $1.6 \times 10^{-13}$
4 $1.72 \times 10^{-13}$
Moving Charges & Magnetism

153532 An electron of mass $m$ is accelerated by a d.c. potential difference $V$ and then subjected to a transverse magnetic field $B$, The trajectory of the electron will be a circle of radius

1 $\sqrt{\frac{2 \mathrm{~B}^{2} \mathrm{~V}}{\mathrm{em}}}$
2 $\sqrt{\frac{2 \mathrm{BeV}}{\mathrm{B}^{2}}}$
3 $\sqrt{\frac{2 \mathrm{mB}}{\mathrm{eV}^{2}}}$
4 $\sqrt{\frac{2 m V}{e B^{2}}}$
Moving Charges & Magnetism

153528 A proton, a deuteron and $\alpha$ particle accelerated through the same potential difference enter the region of uniform magnetic field, moving at right angles to magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 1$
2 $1: 1: 2$
3 $2: 1: 2$
4 $2: 2: 1$
Moving Charges & Magnetism

153529 An electron of charge ' $e$ ' and mass ' $m$ ' is accelerated through a potential difference of ' $V$ ' volt. It enters a transverse uniform magnetic field ' $B$ ' and describes a circular path. The radius of the circular path is

1 $\frac{\mathrm{mV}}{\mathrm{eB}}$
2 $\sqrt{\frac{\mathrm{mV}}{\mathrm{eB}}}$
3 $\frac{1}{\mathrm{~B}} \sqrt{\frac{\mathrm{mV}}{\mathrm{e}}}$
4 $\frac{1}{\mathrm{~B}} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{e}}}$
Moving Charges & Magnetism

153530 An electron moves with a speed of $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ along the positive $x$-direction in a magnetic field $\vec{B}=(\hat{i}-4 \hat{j}-3 \hat{k}) T$. The magnitude of the force (in Newton) experienced by the electron is

1 $1.18 \times 10^{-13}$
2 $1.28 \times 10^{-13}$
3 $1.6 \times 10^{-13}$
4 $1.72 \times 10^{-13}$
Moving Charges & Magnetism

153532 An electron of mass $m$ is accelerated by a d.c. potential difference $V$ and then subjected to a transverse magnetic field $B$, The trajectory of the electron will be a circle of radius

1 $\sqrt{\frac{2 \mathrm{~B}^{2} \mathrm{~V}}{\mathrm{em}}}$
2 $\sqrt{\frac{2 \mathrm{BeV}}{\mathrm{B}^{2}}}$
3 $\sqrt{\frac{2 \mathrm{mB}}{\mathrm{eV}^{2}}}$
4 $\sqrt{\frac{2 m V}{e B^{2}}}$
Moving Charges & Magnetism

153528 A proton, a deuteron and $\alpha$ particle accelerated through the same potential difference enter the region of uniform magnetic field, moving at right angles to magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 1$
2 $1: 1: 2$
3 $2: 1: 2$
4 $2: 2: 1$
Moving Charges & Magnetism

153529 An electron of charge ' $e$ ' and mass ' $m$ ' is accelerated through a potential difference of ' $V$ ' volt. It enters a transverse uniform magnetic field ' $B$ ' and describes a circular path. The radius of the circular path is

1 $\frac{\mathrm{mV}}{\mathrm{eB}}$
2 $\sqrt{\frac{\mathrm{mV}}{\mathrm{eB}}}$
3 $\frac{1}{\mathrm{~B}} \sqrt{\frac{\mathrm{mV}}{\mathrm{e}}}$
4 $\frac{1}{\mathrm{~B}} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{e}}}$
Moving Charges & Magnetism

153530 An electron moves with a speed of $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ along the positive $x$-direction in a magnetic field $\vec{B}=(\hat{i}-4 \hat{j}-3 \hat{k}) T$. The magnitude of the force (in Newton) experienced by the electron is

1 $1.18 \times 10^{-13}$
2 $1.28 \times 10^{-13}$
3 $1.6 \times 10^{-13}$
4 $1.72 \times 10^{-13}$
Moving Charges & Magnetism

153532 An electron of mass $m$ is accelerated by a d.c. potential difference $V$ and then subjected to a transverse magnetic field $B$, The trajectory of the electron will be a circle of radius

1 $\sqrt{\frac{2 \mathrm{~B}^{2} \mathrm{~V}}{\mathrm{em}}}$
2 $\sqrt{\frac{2 \mathrm{BeV}}{\mathrm{B}^{2}}}$
3 $\sqrt{\frac{2 \mathrm{mB}}{\mathrm{eV}^{2}}}$
4 $\sqrt{\frac{2 m V}{e B^{2}}}$
Moving Charges & Magnetism

153528 A proton, a deuteron and $\alpha$ particle accelerated through the same potential difference enter the region of uniform magnetic field, moving at right angles to magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 1$
2 $1: 1: 2$
3 $2: 1: 2$
4 $2: 2: 1$
Moving Charges & Magnetism

153529 An electron of charge ' $e$ ' and mass ' $m$ ' is accelerated through a potential difference of ' $V$ ' volt. It enters a transverse uniform magnetic field ' $B$ ' and describes a circular path. The radius of the circular path is

1 $\frac{\mathrm{mV}}{\mathrm{eB}}$
2 $\sqrt{\frac{\mathrm{mV}}{\mathrm{eB}}}$
3 $\frac{1}{\mathrm{~B}} \sqrt{\frac{\mathrm{mV}}{\mathrm{e}}}$
4 $\frac{1}{\mathrm{~B}} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{e}}}$
Moving Charges & Magnetism

153530 An electron moves with a speed of $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ along the positive $x$-direction in a magnetic field $\vec{B}=(\hat{i}-4 \hat{j}-3 \hat{k}) T$. The magnitude of the force (in Newton) experienced by the electron is

1 $1.18 \times 10^{-13}$
2 $1.28 \times 10^{-13}$
3 $1.6 \times 10^{-13}$
4 $1.72 \times 10^{-13}$
Moving Charges & Magnetism

153532 An electron of mass $m$ is accelerated by a d.c. potential difference $V$ and then subjected to a transverse magnetic field $B$, The trajectory of the electron will be a circle of radius

1 $\sqrt{\frac{2 \mathrm{~B}^{2} \mathrm{~V}}{\mathrm{em}}}$
2 $\sqrt{\frac{2 \mathrm{BeV}}{\mathrm{B}^{2}}}$
3 $\sqrt{\frac{2 \mathrm{mB}}{\mathrm{eV}^{2}}}$
4 $\sqrt{\frac{2 m V}{e B^{2}}}$