02. Motion of Charge Particle in Magnetic Field
Moving Charges & Magnetism

153533 A charged particle is moving in a uniform magnetic field in a circular path of radius ' $R$ '. When the energy of the particle becomes three times the original, the new radius will be

1 $\mathrm{R}$
2 $3 \mathrm{R}$
3 $\frac{\mathrm{R}}{3}$
4 $\sqrt{3} \mathrm{R}$
Moving Charges & Magnetism

153534 An electron moves in a circular arc of radius 10 $\mathrm{m}$ at a constant speed of $2 \times 10^{7} \mathrm{~ms}^{-1}$ with its plane of motion normal to a magnetic flux density of $10^{-5} \mathrm{~T}$. What will be the value of specific charge of the electron?

1 $2 \times 10^{4} \mathrm{C} \mathrm{kg}^{-1}$
2 $2 \times 10^{5} \mathrm{C} \mathrm{kg}^{-1}$
3 $5 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$
4 $2 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$
Moving Charges & Magnetism

153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )

1 $1.6 \times 10^{-12} \mathrm{~N}$
2 $3.2 \times 10^{-12} \mathrm{~N}$
3 $4.0 \times 10^{-12} \mathrm{~N}$
4 $2.4 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153538 Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$

1 $1.0 \times 10^{-6}$
2 $1.5 \times 10^{-7}$
3 $3.0 \times 10^{-6}$
4 $2.5 \times 10^{-7}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153533 A charged particle is moving in a uniform magnetic field in a circular path of radius ' $R$ '. When the energy of the particle becomes three times the original, the new radius will be

1 $\mathrm{R}$
2 $3 \mathrm{R}$
3 $\frac{\mathrm{R}}{3}$
4 $\sqrt{3} \mathrm{R}$
Moving Charges & Magnetism

153534 An electron moves in a circular arc of radius 10 $\mathrm{m}$ at a constant speed of $2 \times 10^{7} \mathrm{~ms}^{-1}$ with its plane of motion normal to a magnetic flux density of $10^{-5} \mathrm{~T}$. What will be the value of specific charge of the electron?

1 $2 \times 10^{4} \mathrm{C} \mathrm{kg}^{-1}$
2 $2 \times 10^{5} \mathrm{C} \mathrm{kg}^{-1}$
3 $5 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$
4 $2 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$
Moving Charges & Magnetism

153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )

1 $1.6 \times 10^{-12} \mathrm{~N}$
2 $3.2 \times 10^{-12} \mathrm{~N}$
3 $4.0 \times 10^{-12} \mathrm{~N}$
4 $2.4 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153538 Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$

1 $1.0 \times 10^{-6}$
2 $1.5 \times 10^{-7}$
3 $3.0 \times 10^{-6}$
4 $2.5 \times 10^{-7}$
Moving Charges & Magnetism

153533 A charged particle is moving in a uniform magnetic field in a circular path of radius ' $R$ '. When the energy of the particle becomes three times the original, the new radius will be

1 $\mathrm{R}$
2 $3 \mathrm{R}$
3 $\frac{\mathrm{R}}{3}$
4 $\sqrt{3} \mathrm{R}$
Moving Charges & Magnetism

153534 An electron moves in a circular arc of radius 10 $\mathrm{m}$ at a constant speed of $2 \times 10^{7} \mathrm{~ms}^{-1}$ with its plane of motion normal to a magnetic flux density of $10^{-5} \mathrm{~T}$. What will be the value of specific charge of the electron?

1 $2 \times 10^{4} \mathrm{C} \mathrm{kg}^{-1}$
2 $2 \times 10^{5} \mathrm{C} \mathrm{kg}^{-1}$
3 $5 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$
4 $2 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$
Moving Charges & Magnetism

153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )

1 $1.6 \times 10^{-12} \mathrm{~N}$
2 $3.2 \times 10^{-12} \mathrm{~N}$
3 $4.0 \times 10^{-12} \mathrm{~N}$
4 $2.4 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153538 Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$

1 $1.0 \times 10^{-6}$
2 $1.5 \times 10^{-7}$
3 $3.0 \times 10^{-6}$
4 $2.5 \times 10^{-7}$
Moving Charges & Magnetism

153533 A charged particle is moving in a uniform magnetic field in a circular path of radius ' $R$ '. When the energy of the particle becomes three times the original, the new radius will be

1 $\mathrm{R}$
2 $3 \mathrm{R}$
3 $\frac{\mathrm{R}}{3}$
4 $\sqrt{3} \mathrm{R}$
Moving Charges & Magnetism

153534 An electron moves in a circular arc of radius 10 $\mathrm{m}$ at a constant speed of $2 \times 10^{7} \mathrm{~ms}^{-1}$ with its plane of motion normal to a magnetic flux density of $10^{-5} \mathrm{~T}$. What will be the value of specific charge of the electron?

1 $2 \times 10^{4} \mathrm{C} \mathrm{kg}^{-1}$
2 $2 \times 10^{5} \mathrm{C} \mathrm{kg}^{-1}$
3 $5 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$
4 $2 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$
Moving Charges & Magnetism

153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )

1 $1.6 \times 10^{-12} \mathrm{~N}$
2 $3.2 \times 10^{-12} \mathrm{~N}$
3 $4.0 \times 10^{-12} \mathrm{~N}$
4 $2.4 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153538 Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$

1 $1.0 \times 10^{-6}$
2 $1.5 \times 10^{-7}$
3 $3.0 \times 10^{-6}$
4 $2.5 \times 10^{-7}$