153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )
153538
Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$
153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )
153538
Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$
153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )
153538
Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$
153537 A proton enters into a magnetic field of induction $1.732 \mathrm{~T}$, with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$ at an angle $60^{\circ}$ to the field. The force acting on the proton is $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \sin 60^{\circ}=\cos 30^{\circ}=\right.$ $\frac{\sqrt{3}}{2}$ )
153538
Two particles carrying equal charges move parallel to each other with the speed $150 \mathrm{~km} / \mathrm{s}$. If $F_{1}$ and $F_{2}$ are magnetic and electric forces between two charged particles then,
$\frac{\left|F_{1}\right|}{\left|F_{2}\right|} \text { is }\left(\text { Let } \mu_{0} \varepsilon_{0}=\frac{1}{9 \times 10^{16}} \mathrm{~s}^{2} / \mathrm{m}^{2}\right)$