00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153186 Ionised hydrogen atoms and $\alpha$-particles with same momenta enters perpendicular to a constant magnetic field, $B$. The ratio of their radii of their paths $\mathbf{r}_{H}: \mathbf{r}_{\alpha}$ will be

1 $1: 2$
2 $4: 1$
3 $1: 4$
4 $2: 1$
[NET National- 2019]
Moving Charges & Magnetism

153187 A straight horizontal conducting rod of length $0.45 \mathrm{~m}$ and mass $60 \mathrm{~g}$ is kept suspended by two conducting wires and a current of $5 \mathrm{~A}$ is flowing through the rod. The magnetic field required to make the rod tension free is

1 $0.22 \mathrm{~T}$
2 $0.23 \mathrm{~T}$
3 $0.25 \mathrm{~T}$
4 $0.26 \mathrm{~T}$
Moving Charges & Magnetism

153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be

1 1
2 -3
3 $-\frac{3}{2}$
4 -2
Moving Charges & Magnetism

153189 The magnetic field at a point due to a current carrying conductor is ' $3 T$ '. If the current flowing through a conductor is doubled then magnetic field will be

1 $4 \mathrm{~T}$
2 $2 \mathrm{~T}$
3 $6 \mathrm{~T}$
4 $8 \mathrm{~T}$
Moving Charges & Magnetism

153191 At what distance from a long straight wire carrying a current of $12 \mathrm{~A}$ will the magnetic field be equal to $3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$ ?

1 $8 \times 10^{-2} \mathrm{~m}$
2 $12 \times 10^{-2} \mathrm{~m}$
3 $18 \times 10^{-2} \mathrm{~m}$
4 $24 \times 10^{-2} \mathrm{~m}$
Moving Charges & Magnetism

153186 Ionised hydrogen atoms and $\alpha$-particles with same momenta enters perpendicular to a constant magnetic field, $B$. The ratio of their radii of their paths $\mathbf{r}_{H}: \mathbf{r}_{\alpha}$ will be

1 $1: 2$
2 $4: 1$
3 $1: 4$
4 $2: 1$
[NET National- 2019]
Moving Charges & Magnetism

153187 A straight horizontal conducting rod of length $0.45 \mathrm{~m}$ and mass $60 \mathrm{~g}$ is kept suspended by two conducting wires and a current of $5 \mathrm{~A}$ is flowing through the rod. The magnetic field required to make the rod tension free is

1 $0.22 \mathrm{~T}$
2 $0.23 \mathrm{~T}$
3 $0.25 \mathrm{~T}$
4 $0.26 \mathrm{~T}$
Moving Charges & Magnetism

153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be

1 1
2 -3
3 $-\frac{3}{2}$
4 -2
Moving Charges & Magnetism

153189 The magnetic field at a point due to a current carrying conductor is ' $3 T$ '. If the current flowing through a conductor is doubled then magnetic field will be

1 $4 \mathrm{~T}$
2 $2 \mathrm{~T}$
3 $6 \mathrm{~T}$
4 $8 \mathrm{~T}$
Moving Charges & Magnetism

153191 At what distance from a long straight wire carrying a current of $12 \mathrm{~A}$ will the magnetic field be equal to $3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$ ?

1 $8 \times 10^{-2} \mathrm{~m}$
2 $12 \times 10^{-2} \mathrm{~m}$
3 $18 \times 10^{-2} \mathrm{~m}$
4 $24 \times 10^{-2} \mathrm{~m}$
Moving Charges & Magnetism

153186 Ionised hydrogen atoms and $\alpha$-particles with same momenta enters perpendicular to a constant magnetic field, $B$. The ratio of their radii of their paths $\mathbf{r}_{H}: \mathbf{r}_{\alpha}$ will be

1 $1: 2$
2 $4: 1$
3 $1: 4$
4 $2: 1$
[NET National- 2019]
Moving Charges & Magnetism

153187 A straight horizontal conducting rod of length $0.45 \mathrm{~m}$ and mass $60 \mathrm{~g}$ is kept suspended by two conducting wires and a current of $5 \mathrm{~A}$ is flowing through the rod. The magnetic field required to make the rod tension free is

1 $0.22 \mathrm{~T}$
2 $0.23 \mathrm{~T}$
3 $0.25 \mathrm{~T}$
4 $0.26 \mathrm{~T}$
Moving Charges & Magnetism

153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be

1 1
2 -3
3 $-\frac{3}{2}$
4 -2
Moving Charges & Magnetism

153189 The magnetic field at a point due to a current carrying conductor is ' $3 T$ '. If the current flowing through a conductor is doubled then magnetic field will be

1 $4 \mathrm{~T}$
2 $2 \mathrm{~T}$
3 $6 \mathrm{~T}$
4 $8 \mathrm{~T}$
Moving Charges & Magnetism

153191 At what distance from a long straight wire carrying a current of $12 \mathrm{~A}$ will the magnetic field be equal to $3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$ ?

1 $8 \times 10^{-2} \mathrm{~m}$
2 $12 \times 10^{-2} \mathrm{~m}$
3 $18 \times 10^{-2} \mathrm{~m}$
4 $24 \times 10^{-2} \mathrm{~m}$
Moving Charges & Magnetism

153186 Ionised hydrogen atoms and $\alpha$-particles with same momenta enters perpendicular to a constant magnetic field, $B$. The ratio of their radii of their paths $\mathbf{r}_{H}: \mathbf{r}_{\alpha}$ will be

1 $1: 2$
2 $4: 1$
3 $1: 4$
4 $2: 1$
[NET National- 2019]
Moving Charges & Magnetism

153187 A straight horizontal conducting rod of length $0.45 \mathrm{~m}$ and mass $60 \mathrm{~g}$ is kept suspended by two conducting wires and a current of $5 \mathrm{~A}$ is flowing through the rod. The magnetic field required to make the rod tension free is

1 $0.22 \mathrm{~T}$
2 $0.23 \mathrm{~T}$
3 $0.25 \mathrm{~T}$
4 $0.26 \mathrm{~T}$
Moving Charges & Magnetism

153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be

1 1
2 -3
3 $-\frac{3}{2}$
4 -2
Moving Charges & Magnetism

153189 The magnetic field at a point due to a current carrying conductor is ' $3 T$ '. If the current flowing through a conductor is doubled then magnetic field will be

1 $4 \mathrm{~T}$
2 $2 \mathrm{~T}$
3 $6 \mathrm{~T}$
4 $8 \mathrm{~T}$
Moving Charges & Magnetism

153191 At what distance from a long straight wire carrying a current of $12 \mathrm{~A}$ will the magnetic field be equal to $3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$ ?

1 $8 \times 10^{-2} \mathrm{~m}$
2 $12 \times 10^{-2} \mathrm{~m}$
3 $18 \times 10^{-2} \mathrm{~m}$
4 $24 \times 10^{-2} \mathrm{~m}$
Moving Charges & Magnetism

153186 Ionised hydrogen atoms and $\alpha$-particles with same momenta enters perpendicular to a constant magnetic field, $B$. The ratio of their radii of their paths $\mathbf{r}_{H}: \mathbf{r}_{\alpha}$ will be

1 $1: 2$
2 $4: 1$
3 $1: 4$
4 $2: 1$
[NET National- 2019]
Moving Charges & Magnetism

153187 A straight horizontal conducting rod of length $0.45 \mathrm{~m}$ and mass $60 \mathrm{~g}$ is kept suspended by two conducting wires and a current of $5 \mathrm{~A}$ is flowing through the rod. The magnetic field required to make the rod tension free is

1 $0.22 \mathrm{~T}$
2 $0.23 \mathrm{~T}$
3 $0.25 \mathrm{~T}$
4 $0.26 \mathrm{~T}$
Moving Charges & Magnetism

153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be

1 1
2 -3
3 $-\frac{3}{2}$
4 -2
Moving Charges & Magnetism

153189 The magnetic field at a point due to a current carrying conductor is ' $3 T$ '. If the current flowing through a conductor is doubled then magnetic field will be

1 $4 \mathrm{~T}$
2 $2 \mathrm{~T}$
3 $6 \mathrm{~T}$
4 $8 \mathrm{~T}$
Moving Charges & Magnetism

153191 At what distance from a long straight wire carrying a current of $12 \mathrm{~A}$ will the magnetic field be equal to $3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$ ?

1 $8 \times 10^{-2} \mathrm{~m}$
2 $12 \times 10^{-2} \mathrm{~m}$
3 $18 \times 10^{-2} \mathrm{~m}$
4 $24 \times 10^{-2} \mathrm{~m}$