153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be
153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be
153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be
153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be
153188 An electron is moving through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=\alpha(\hat{\mathbf{i}}+3 \mathbf{j}) \mathrm{T}$, where $\alpha$ is a constant. At some instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. If the magnetic force acting on the electron is $\left(3.2 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$, then the value of $\alpha$ will be