04. Cells, Internal Resistance and Cell Combination, Thermocouple
Current Electricity

152614 Determine the potential drop between the points $A$ and $C$ in the following circuit.

Resistances $1 \Omega$ and $2 \Omega$ are representing the internal resistances of the respective cells.

1 $\frac{4}{5} \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $2.25 \mathrm{~V}$
4 $\frac{5}{4} \mathrm{~V}$
Current Electricity

152616 A $4 \mathrm{~m}$ long wire resistance $8 \Omega$ is connected in series with a battery of emf $2 \mathrm{~V}$ and a resistor of $7 \Omega$. The internal resistance of the battery is $1 \Omega$. What is the potential gradient along the wire?

1 $1.00 \mathrm{Vm}^{-1}$
2 $0.75 \mathrm{Vm}^{-1}$
3 $0.50 \mathrm{Vm}^{-1}$
4 $0.25 \mathrm{Vm}^{-1}$
Current Electricity

152617 A cell of emf $E$ is connected to a resistance $R_{1}$ for time $t$ and the amount of heat generated in it is $H$. If the resistance $R_{1}$ is replaced by another resistance $R_{2}$ and is connected to the cell at the same time $t$, the amount of heat generated in $R_{2}$ is $4 H$. Then internal resistance of the cell is

1 $\frac{2 R_{1}+R_{2}}{2}$
2 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}$
3 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}$
4 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}+\sqrt{\mathrm{R}_{1}}}$
Current Electricity

152618 A battery of e.m.f. $E$ and internal resistance $r$ is connected to an external resistance $R$ the condition for maximum power transfer is

1 $\mathrm{r}\lt\mathrm{R}$
2 $r>R$
3 $r=1 / R$
4 $r=R$
Current Electricity

152614 Determine the potential drop between the points $A$ and $C$ in the following circuit.

Resistances $1 \Omega$ and $2 \Omega$ are representing the internal resistances of the respective cells.

1 $\frac{4}{5} \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $2.25 \mathrm{~V}$
4 $\frac{5}{4} \mathrm{~V}$
Current Electricity

152616 A $4 \mathrm{~m}$ long wire resistance $8 \Omega$ is connected in series with a battery of emf $2 \mathrm{~V}$ and a resistor of $7 \Omega$. The internal resistance of the battery is $1 \Omega$. What is the potential gradient along the wire?

1 $1.00 \mathrm{Vm}^{-1}$
2 $0.75 \mathrm{Vm}^{-1}$
3 $0.50 \mathrm{Vm}^{-1}$
4 $0.25 \mathrm{Vm}^{-1}$
Current Electricity

152617 A cell of emf $E$ is connected to a resistance $R_{1}$ for time $t$ and the amount of heat generated in it is $H$. If the resistance $R_{1}$ is replaced by another resistance $R_{2}$ and is connected to the cell at the same time $t$, the amount of heat generated in $R_{2}$ is $4 H$. Then internal resistance of the cell is

1 $\frac{2 R_{1}+R_{2}}{2}$
2 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}$
3 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}$
4 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}+\sqrt{\mathrm{R}_{1}}}$
Current Electricity

152618 A battery of e.m.f. $E$ and internal resistance $r$ is connected to an external resistance $R$ the condition for maximum power transfer is

1 $\mathrm{r}\lt\mathrm{R}$
2 $r>R$
3 $r=1 / R$
4 $r=R$
Current Electricity

152614 Determine the potential drop between the points $A$ and $C$ in the following circuit.

Resistances $1 \Omega$ and $2 \Omega$ are representing the internal resistances of the respective cells.

1 $\frac{4}{5} \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $2.25 \mathrm{~V}$
4 $\frac{5}{4} \mathrm{~V}$
Current Electricity

152616 A $4 \mathrm{~m}$ long wire resistance $8 \Omega$ is connected in series with a battery of emf $2 \mathrm{~V}$ and a resistor of $7 \Omega$. The internal resistance of the battery is $1 \Omega$. What is the potential gradient along the wire?

1 $1.00 \mathrm{Vm}^{-1}$
2 $0.75 \mathrm{Vm}^{-1}$
3 $0.50 \mathrm{Vm}^{-1}$
4 $0.25 \mathrm{Vm}^{-1}$
Current Electricity

152617 A cell of emf $E$ is connected to a resistance $R_{1}$ for time $t$ and the amount of heat generated in it is $H$. If the resistance $R_{1}$ is replaced by another resistance $R_{2}$ and is connected to the cell at the same time $t$, the amount of heat generated in $R_{2}$ is $4 H$. Then internal resistance of the cell is

1 $\frac{2 R_{1}+R_{2}}{2}$
2 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}$
3 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}$
4 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}+\sqrt{\mathrm{R}_{1}}}$
Current Electricity

152618 A battery of e.m.f. $E$ and internal resistance $r$ is connected to an external resistance $R$ the condition for maximum power transfer is

1 $\mathrm{r}\lt\mathrm{R}$
2 $r>R$
3 $r=1 / R$
4 $r=R$
Current Electricity

152614 Determine the potential drop between the points $A$ and $C$ in the following circuit.

Resistances $1 \Omega$ and $2 \Omega$ are representing the internal resistances of the respective cells.

1 $\frac{4}{5} \mathrm{~V}$
2 $1.75 \mathrm{~V}$
3 $2.25 \mathrm{~V}$
4 $\frac{5}{4} \mathrm{~V}$
Current Electricity

152616 A $4 \mathrm{~m}$ long wire resistance $8 \Omega$ is connected in series with a battery of emf $2 \mathrm{~V}$ and a resistor of $7 \Omega$. The internal resistance of the battery is $1 \Omega$. What is the potential gradient along the wire?

1 $1.00 \mathrm{Vm}^{-1}$
2 $0.75 \mathrm{Vm}^{-1}$
3 $0.50 \mathrm{Vm}^{-1}$
4 $0.25 \mathrm{Vm}^{-1}$
Current Electricity

152617 A cell of emf $E$ is connected to a resistance $R_{1}$ for time $t$ and the amount of heat generated in it is $H$. If the resistance $R_{1}$ is replaced by another resistance $R_{2}$ and is connected to the cell at the same time $t$, the amount of heat generated in $R_{2}$ is $4 H$. Then internal resistance of the cell is

1 $\frac{2 R_{1}+R_{2}}{2}$
2 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}$
3 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-2 \sqrt{\mathrm{R}_{1}}}{2 \sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}$
4 $\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}} \frac{\sqrt{\mathrm{R}_{2}}-\sqrt{\mathrm{R}_{1}}}{\sqrt{\mathrm{R}_{2}}+\sqrt{\mathrm{R}_{1}}}$
Current Electricity

152618 A battery of e.m.f. $E$ and internal resistance $r$ is connected to an external resistance $R$ the condition for maximum power transfer is

1 $\mathrm{r}\lt\mathrm{R}$
2 $r>R$
3 $r=1 / R$
4 $r=R$