152611 The temperature of the cold junction of a thermocouple is $0^{0} \mathrm{C}$ and the temperature of the hot junction is $\mathrm{T}^{\circ} \mathrm{C}$. The relation for the thermo emf is given by, $\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$ (When $A=16$ and $B=0.08$ ). The temperature of inversion will be :
152611 The temperature of the cold junction of a thermocouple is $0^{0} \mathrm{C}$ and the temperature of the hot junction is $\mathrm{T}^{\circ} \mathrm{C}$. The relation for the thermo emf is given by, $\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$ (When $A=16$ and $B=0.08$ ). The temperature of inversion will be :
152611 The temperature of the cold junction of a thermocouple is $0^{0} \mathrm{C}$ and the temperature of the hot junction is $\mathrm{T}^{\circ} \mathrm{C}$. The relation for the thermo emf is given by, $\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$ (When $A=16$ and $B=0.08$ ). The temperature of inversion will be :
152611 The temperature of the cold junction of a thermocouple is $0^{0} \mathrm{C}$ and the temperature of the hot junction is $\mathrm{T}^{\circ} \mathrm{C}$. The relation for the thermo emf is given by, $\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$ (When $A=16$ and $B=0.08$ ). The temperature of inversion will be :