151761
The current in the $1 \Omega$ resistor shown in the circuit is :
1 $\frac{2}{3} \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $6 \mathrm{~A}$
4 $2 \mathrm{~A}$
Explanation:
D Given, $\mathrm{V}=6$ Volt In the given circuit two $4 \Omega$ resistors are connected in parallel, this combination is connected in series with $1 \Omega$ resistance. $\therefore \quad \frac{1}{\mathrm{R}^{\prime}}=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ $\mathrm{R}^{\prime}=2 \Omega$ $\mathrm{R}^{\prime \prime}=2 \Omega+1 \Omega=3 \Omega$ From Ohm's law, $\mathrm{V}=\mathrm{IR}$ $\therefore$ Current, (I) $=\frac{\mathrm{V}}{\mathrm{R}}=\frac{6}{3}=2 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151762
The number of free electrons per $100 \mathrm{~mm}$ of ordinary copper wire is $2 \times 10^{21}$. Average drift speed of electrons is $0.25 \mathrm{~mm} / \mathrm{s}$. The current flowing is :
1 $5 \mathrm{~A}$
2 $80 \mathrm{~A}$
3 $8 \mathrm{~A}$
4 $0.8 \mathrm{~A}$
Explanation:
D Given, $\mathrm{N}=2 \times 10^{21}, l=100 \mathrm{~mm}$ Average drift speed of electron $=0.25 \mathrm{~mm} / \mathrm{s}$ We know that, $\text { Drift velocity, } v_{d}=\frac{I}{n \times e \times A}$ Number of electrons per unit volume, $\mathrm{n}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100}$ Hence, current in the wire, $\mathrm{I}=\mathrm{n} \times \mathrm{e} \times \mathrm{A} \times \mathrm{v}_{\mathrm{d}}$ $\quad\left(\because \text { Electric charge, } \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$ $\mathrm{I}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100} \times 1.6 \times 10^{-19} \times \mathrm{A} \times 0.25$ $\mathrm{I}=0.8 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151763
A wire of diameter $0.02 \mathrm{~m}$ contains $10^{28}$ free electrons per cubic metre. For an electrical current of $100 \mathrm{~A}$, the drift velocity of the free electrons in the wire is nearly :
151765
The drift velocity of the electrons in a copper wire of length $2 \mathrm{~m}$ under the application of a potential difference of $200 \mathrm{~V}$ is $0.5 \mathrm{~ms}^{-1}$. Their mobility (in $\left.\mathbf{m}^{2} \mathbf{V}^{-1} \mathbf{s}^{-1}\right)$
151761
The current in the $1 \Omega$ resistor shown in the circuit is :
1 $\frac{2}{3} \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $6 \mathrm{~A}$
4 $2 \mathrm{~A}$
Explanation:
D Given, $\mathrm{V}=6$ Volt In the given circuit two $4 \Omega$ resistors are connected in parallel, this combination is connected in series with $1 \Omega$ resistance. $\therefore \quad \frac{1}{\mathrm{R}^{\prime}}=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ $\mathrm{R}^{\prime}=2 \Omega$ $\mathrm{R}^{\prime \prime}=2 \Omega+1 \Omega=3 \Omega$ From Ohm's law, $\mathrm{V}=\mathrm{IR}$ $\therefore$ Current, (I) $=\frac{\mathrm{V}}{\mathrm{R}}=\frac{6}{3}=2 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151762
The number of free electrons per $100 \mathrm{~mm}$ of ordinary copper wire is $2 \times 10^{21}$. Average drift speed of electrons is $0.25 \mathrm{~mm} / \mathrm{s}$. The current flowing is :
1 $5 \mathrm{~A}$
2 $80 \mathrm{~A}$
3 $8 \mathrm{~A}$
4 $0.8 \mathrm{~A}$
Explanation:
D Given, $\mathrm{N}=2 \times 10^{21}, l=100 \mathrm{~mm}$ Average drift speed of electron $=0.25 \mathrm{~mm} / \mathrm{s}$ We know that, $\text { Drift velocity, } v_{d}=\frac{I}{n \times e \times A}$ Number of electrons per unit volume, $\mathrm{n}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100}$ Hence, current in the wire, $\mathrm{I}=\mathrm{n} \times \mathrm{e} \times \mathrm{A} \times \mathrm{v}_{\mathrm{d}}$ $\quad\left(\because \text { Electric charge, } \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$ $\mathrm{I}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100} \times 1.6 \times 10^{-19} \times \mathrm{A} \times 0.25$ $\mathrm{I}=0.8 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151763
A wire of diameter $0.02 \mathrm{~m}$ contains $10^{28}$ free electrons per cubic metre. For an electrical current of $100 \mathrm{~A}$, the drift velocity of the free electrons in the wire is nearly :
151765
The drift velocity of the electrons in a copper wire of length $2 \mathrm{~m}$ under the application of a potential difference of $200 \mathrm{~V}$ is $0.5 \mathrm{~ms}^{-1}$. Their mobility (in $\left.\mathbf{m}^{2} \mathbf{V}^{-1} \mathbf{s}^{-1}\right)$
151761
The current in the $1 \Omega$ resistor shown in the circuit is :
1 $\frac{2}{3} \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $6 \mathrm{~A}$
4 $2 \mathrm{~A}$
Explanation:
D Given, $\mathrm{V}=6$ Volt In the given circuit two $4 \Omega$ resistors are connected in parallel, this combination is connected in series with $1 \Omega$ resistance. $\therefore \quad \frac{1}{\mathrm{R}^{\prime}}=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ $\mathrm{R}^{\prime}=2 \Omega$ $\mathrm{R}^{\prime \prime}=2 \Omega+1 \Omega=3 \Omega$ From Ohm's law, $\mathrm{V}=\mathrm{IR}$ $\therefore$ Current, (I) $=\frac{\mathrm{V}}{\mathrm{R}}=\frac{6}{3}=2 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151762
The number of free electrons per $100 \mathrm{~mm}$ of ordinary copper wire is $2 \times 10^{21}$. Average drift speed of electrons is $0.25 \mathrm{~mm} / \mathrm{s}$. The current flowing is :
1 $5 \mathrm{~A}$
2 $80 \mathrm{~A}$
3 $8 \mathrm{~A}$
4 $0.8 \mathrm{~A}$
Explanation:
D Given, $\mathrm{N}=2 \times 10^{21}, l=100 \mathrm{~mm}$ Average drift speed of electron $=0.25 \mathrm{~mm} / \mathrm{s}$ We know that, $\text { Drift velocity, } v_{d}=\frac{I}{n \times e \times A}$ Number of electrons per unit volume, $\mathrm{n}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100}$ Hence, current in the wire, $\mathrm{I}=\mathrm{n} \times \mathrm{e} \times \mathrm{A} \times \mathrm{v}_{\mathrm{d}}$ $\quad\left(\because \text { Electric charge, } \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$ $\mathrm{I}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100} \times 1.6 \times 10^{-19} \times \mathrm{A} \times 0.25$ $\mathrm{I}=0.8 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151763
A wire of diameter $0.02 \mathrm{~m}$ contains $10^{28}$ free electrons per cubic metre. For an electrical current of $100 \mathrm{~A}$, the drift velocity of the free electrons in the wire is nearly :
151765
The drift velocity of the electrons in a copper wire of length $2 \mathrm{~m}$ under the application of a potential difference of $200 \mathrm{~V}$ is $0.5 \mathrm{~ms}^{-1}$. Their mobility (in $\left.\mathbf{m}^{2} \mathbf{V}^{-1} \mathbf{s}^{-1}\right)$
151761
The current in the $1 \Omega$ resistor shown in the circuit is :
1 $\frac{2}{3} \mathrm{~A}$
2 $3 \mathrm{~A}$
3 $6 \mathrm{~A}$
4 $2 \mathrm{~A}$
Explanation:
D Given, $\mathrm{V}=6$ Volt In the given circuit two $4 \Omega$ resistors are connected in parallel, this combination is connected in series with $1 \Omega$ resistance. $\therefore \quad \frac{1}{\mathrm{R}^{\prime}}=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ $\mathrm{R}^{\prime}=2 \Omega$ $\mathrm{R}^{\prime \prime}=2 \Omega+1 \Omega=3 \Omega$ From Ohm's law, $\mathrm{V}=\mathrm{IR}$ $\therefore$ Current, (I) $=\frac{\mathrm{V}}{\mathrm{R}}=\frac{6}{3}=2 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151762
The number of free electrons per $100 \mathrm{~mm}$ of ordinary copper wire is $2 \times 10^{21}$. Average drift speed of electrons is $0.25 \mathrm{~mm} / \mathrm{s}$. The current flowing is :
1 $5 \mathrm{~A}$
2 $80 \mathrm{~A}$
3 $8 \mathrm{~A}$
4 $0.8 \mathrm{~A}$
Explanation:
D Given, $\mathrm{N}=2 \times 10^{21}, l=100 \mathrm{~mm}$ Average drift speed of electron $=0.25 \mathrm{~mm} / \mathrm{s}$ We know that, $\text { Drift velocity, } v_{d}=\frac{I}{n \times e \times A}$ Number of electrons per unit volume, $\mathrm{n}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100}$ Hence, current in the wire, $\mathrm{I}=\mathrm{n} \times \mathrm{e} \times \mathrm{A} \times \mathrm{v}_{\mathrm{d}}$ $\quad\left(\because \text { Electric charge, } \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$ $\mathrm{I}=\frac{2 \times 10^{21}}{\mathrm{~A} \times 100} \times 1.6 \times 10^{-19} \times \mathrm{A} \times 0.25$ $\mathrm{I}=0.8 \mathrm{~A}$
UPSEE - 2005
Current Electricity
151763
A wire of diameter $0.02 \mathrm{~m}$ contains $10^{28}$ free electrons per cubic metre. For an electrical current of $100 \mathrm{~A}$, the drift velocity of the free electrons in the wire is nearly :
151765
The drift velocity of the electrons in a copper wire of length $2 \mathrm{~m}$ under the application of a potential difference of $200 \mathrm{~V}$ is $0.5 \mathrm{~ms}^{-1}$. Their mobility (in $\left.\mathbf{m}^{2} \mathbf{V}^{-1} \mathbf{s}^{-1}\right)$