00. Electric Current, Current Density and Drift Velocity
Current Electricity

151757 A $60 \mathrm{~W}$ bulb carries a current $0.5 \mathrm{~A}$. The total charge passing through it in $1 \mathrm{~h}$ is

1 $3600 \mathrm{C}$
2 $3000 \mathrm{C}$
3 $2400 \mathrm{C}$
4 $1800 \mathrm{C}$
Current Electricity

151758 When a current $I$ is set up in a wire of radius $r$, the drift velocity is $v_{d}$. If the same current is set up through a wire of radius $2 r$, the drift velocity will be

1 $4 v_{d}$
2 $2 v_{\mathrm{d}}$
3 $\mathrm{v}_{\mathrm{d}} / 2$
4 $\mathrm{v}_{\mathrm{d}} / 4$
Current Electricity

151759 The mobility of free electrons (charge $=e$, mass $=m$ and relaxation time $=\tau$ ) in a metal is proportional to

1 $\frac{\mathrm{e}}{\mathrm{m}} \tau$
2 $\frac{\mathrm{m}}{\mathrm{e}} \tau$
3 $\frac{\mathrm{e}}{\mathrm{m} \tau}$
4 $\frac{\mathrm{m}}{\mathrm{e} \tau}$
Current Electricity

151760 An aluminium (AI) rod with area of crosssection $4 \times 10^{-6} \mathrm{~m}^{2}$ has a current of $5 \mathrm{~A}$ flowing through it. Find the drift velocity of electron in the rod. Density of $\mathrm{Al}=2.7 \times 10^{3} \mathrm{kgm}^{-3}$ and atomic wt. $=27 \mathrm{u}$. Assume that each $\mathrm{Al}$ atom provides one electron.

1 $8.6 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $1.3 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $2.8 \times 10^{-2} \mathrm{~ms}^{-1}$
4 $3.8 \times 10^{-3} \mathrm{~ms}^{-1}$
Current Electricity

151757 A $60 \mathrm{~W}$ bulb carries a current $0.5 \mathrm{~A}$. The total charge passing through it in $1 \mathrm{~h}$ is

1 $3600 \mathrm{C}$
2 $3000 \mathrm{C}$
3 $2400 \mathrm{C}$
4 $1800 \mathrm{C}$
Current Electricity

151758 When a current $I$ is set up in a wire of radius $r$, the drift velocity is $v_{d}$. If the same current is set up through a wire of radius $2 r$, the drift velocity will be

1 $4 v_{d}$
2 $2 v_{\mathrm{d}}$
3 $\mathrm{v}_{\mathrm{d}} / 2$
4 $\mathrm{v}_{\mathrm{d}} / 4$
Current Electricity

151759 The mobility of free electrons (charge $=e$, mass $=m$ and relaxation time $=\tau$ ) in a metal is proportional to

1 $\frac{\mathrm{e}}{\mathrm{m}} \tau$
2 $\frac{\mathrm{m}}{\mathrm{e}} \tau$
3 $\frac{\mathrm{e}}{\mathrm{m} \tau}$
4 $\frac{\mathrm{m}}{\mathrm{e} \tau}$
Current Electricity

151760 An aluminium (AI) rod with area of crosssection $4 \times 10^{-6} \mathrm{~m}^{2}$ has a current of $5 \mathrm{~A}$ flowing through it. Find the drift velocity of electron in the rod. Density of $\mathrm{Al}=2.7 \times 10^{3} \mathrm{kgm}^{-3}$ and atomic wt. $=27 \mathrm{u}$. Assume that each $\mathrm{Al}$ atom provides one electron.

1 $8.6 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $1.3 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $2.8 \times 10^{-2} \mathrm{~ms}^{-1}$
4 $3.8 \times 10^{-3} \mathrm{~ms}^{-1}$
Current Electricity

151757 A $60 \mathrm{~W}$ bulb carries a current $0.5 \mathrm{~A}$. The total charge passing through it in $1 \mathrm{~h}$ is

1 $3600 \mathrm{C}$
2 $3000 \mathrm{C}$
3 $2400 \mathrm{C}$
4 $1800 \mathrm{C}$
Current Electricity

151758 When a current $I$ is set up in a wire of radius $r$, the drift velocity is $v_{d}$. If the same current is set up through a wire of radius $2 r$, the drift velocity will be

1 $4 v_{d}$
2 $2 v_{\mathrm{d}}$
3 $\mathrm{v}_{\mathrm{d}} / 2$
4 $\mathrm{v}_{\mathrm{d}} / 4$
Current Electricity

151759 The mobility of free electrons (charge $=e$, mass $=m$ and relaxation time $=\tau$ ) in a metal is proportional to

1 $\frac{\mathrm{e}}{\mathrm{m}} \tau$
2 $\frac{\mathrm{m}}{\mathrm{e}} \tau$
3 $\frac{\mathrm{e}}{\mathrm{m} \tau}$
4 $\frac{\mathrm{m}}{\mathrm{e} \tau}$
Current Electricity

151760 An aluminium (AI) rod with area of crosssection $4 \times 10^{-6} \mathrm{~m}^{2}$ has a current of $5 \mathrm{~A}$ flowing through it. Find the drift velocity of electron in the rod. Density of $\mathrm{Al}=2.7 \times 10^{3} \mathrm{kgm}^{-3}$ and atomic wt. $=27 \mathrm{u}$. Assume that each $\mathrm{Al}$ atom provides one electron.

1 $8.6 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $1.3 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $2.8 \times 10^{-2} \mathrm{~ms}^{-1}$
4 $3.8 \times 10^{-3} \mathrm{~ms}^{-1}$
Current Electricity

151757 A $60 \mathrm{~W}$ bulb carries a current $0.5 \mathrm{~A}$. The total charge passing through it in $1 \mathrm{~h}$ is

1 $3600 \mathrm{C}$
2 $3000 \mathrm{C}$
3 $2400 \mathrm{C}$
4 $1800 \mathrm{C}$
Current Electricity

151758 When a current $I$ is set up in a wire of radius $r$, the drift velocity is $v_{d}$. If the same current is set up through a wire of radius $2 r$, the drift velocity will be

1 $4 v_{d}$
2 $2 v_{\mathrm{d}}$
3 $\mathrm{v}_{\mathrm{d}} / 2$
4 $\mathrm{v}_{\mathrm{d}} / 4$
Current Electricity

151759 The mobility of free electrons (charge $=e$, mass $=m$ and relaxation time $=\tau$ ) in a metal is proportional to

1 $\frac{\mathrm{e}}{\mathrm{m}} \tau$
2 $\frac{\mathrm{m}}{\mathrm{e}} \tau$
3 $\frac{\mathrm{e}}{\mathrm{m} \tau}$
4 $\frac{\mathrm{m}}{\mathrm{e} \tau}$
Current Electricity

151760 An aluminium (AI) rod with area of crosssection $4 \times 10^{-6} \mathrm{~m}^{2}$ has a current of $5 \mathrm{~A}$ flowing through it. Find the drift velocity of electron in the rod. Density of $\mathrm{Al}=2.7 \times 10^{3} \mathrm{kgm}^{-3}$ and atomic wt. $=27 \mathrm{u}$. Assume that each $\mathrm{Al}$ atom provides one electron.

1 $8.6 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $1.3 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $2.8 \times 10^{-2} \mathrm{~ms}^{-1}$
4 $3.8 \times 10^{-3} \mathrm{~ms}^{-1}$