02. Thermodynamics Process
Thermodynamics

148350 Which of the following statement is wrong?

1 In an adiabatic process $\Delta \mathrm{E}_{\text {int }}=-\mathrm{W}$
2 In a constant volume process $\Delta \mathrm{E}_{\text {int }}=\mathrm{Q}$
3 In a cyclic process $\Delta \mathrm{E}_{\text {int }}=0$
4 For adiabatic expansion of an ideal gas $\mathrm{TV}^{\gamma}=$ constant
Thermodynamics

148351 A sample of an ideal gas undergoes an isothermal process as shown by the curve $A B$ in the PV diagram. If $\Delta \mathbf{Q}, \Delta \mathbf{U}$ and $\Delta \mathrm{W}$ represent the amount of heat absorbed the change in internal energy and the work done respectively, then which of the following statements is correct?

1 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=-\mathrm{ve}$
2 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=+\mathrm{ve}$
3 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=0$
4 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=+\mathrm{ve}$
Thermodynamics

148354 An ideal gas undergoing adiabatic change has the following pressure-temperature relationship

1 $\mathrm{P}^{\gamma-1} \mathrm{~T}^{\gamma}=$ constant
2 $\mathrm{P}^{\gamma} \mathrm{T}^{\gamma-1}=$ constant
3 $\mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=$ constant
4 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
Thermodynamics

148355 One mole of an ideal gas at an initial temperature of $T K$ does $6 R$ joules of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of gas will be

1 $(\mathrm{T}+2.4) \mathrm{K}$
2 $(\mathrm{T}-2.4) \mathrm{K}$
3 $(\mathrm{T}+4) \mathrm{K}$
4 $(\mathrm{T}-4) \mathrm{K}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

148350 Which of the following statement is wrong?

1 In an adiabatic process $\Delta \mathrm{E}_{\text {int }}=-\mathrm{W}$
2 In a constant volume process $\Delta \mathrm{E}_{\text {int }}=\mathrm{Q}$
3 In a cyclic process $\Delta \mathrm{E}_{\text {int }}=0$
4 For adiabatic expansion of an ideal gas $\mathrm{TV}^{\gamma}=$ constant
Thermodynamics

148351 A sample of an ideal gas undergoes an isothermal process as shown by the curve $A B$ in the PV diagram. If $\Delta \mathbf{Q}, \Delta \mathbf{U}$ and $\Delta \mathrm{W}$ represent the amount of heat absorbed the change in internal energy and the work done respectively, then which of the following statements is correct?

1 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=-\mathrm{ve}$
2 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=+\mathrm{ve}$
3 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=0$
4 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=+\mathrm{ve}$
Thermodynamics

148354 An ideal gas undergoing adiabatic change has the following pressure-temperature relationship

1 $\mathrm{P}^{\gamma-1} \mathrm{~T}^{\gamma}=$ constant
2 $\mathrm{P}^{\gamma} \mathrm{T}^{\gamma-1}=$ constant
3 $\mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=$ constant
4 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
Thermodynamics

148355 One mole of an ideal gas at an initial temperature of $T K$ does $6 R$ joules of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of gas will be

1 $(\mathrm{T}+2.4) \mathrm{K}$
2 $(\mathrm{T}-2.4) \mathrm{K}$
3 $(\mathrm{T}+4) \mathrm{K}$
4 $(\mathrm{T}-4) \mathrm{K}$
Thermodynamics

148350 Which of the following statement is wrong?

1 In an adiabatic process $\Delta \mathrm{E}_{\text {int }}=-\mathrm{W}$
2 In a constant volume process $\Delta \mathrm{E}_{\text {int }}=\mathrm{Q}$
3 In a cyclic process $\Delta \mathrm{E}_{\text {int }}=0$
4 For adiabatic expansion of an ideal gas $\mathrm{TV}^{\gamma}=$ constant
Thermodynamics

148351 A sample of an ideal gas undergoes an isothermal process as shown by the curve $A B$ in the PV diagram. If $\Delta \mathbf{Q}, \Delta \mathbf{U}$ and $\Delta \mathrm{W}$ represent the amount of heat absorbed the change in internal energy and the work done respectively, then which of the following statements is correct?

1 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=-\mathrm{ve}$
2 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=+\mathrm{ve}$
3 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=0$
4 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=+\mathrm{ve}$
Thermodynamics

148354 An ideal gas undergoing adiabatic change has the following pressure-temperature relationship

1 $\mathrm{P}^{\gamma-1} \mathrm{~T}^{\gamma}=$ constant
2 $\mathrm{P}^{\gamma} \mathrm{T}^{\gamma-1}=$ constant
3 $\mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=$ constant
4 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
Thermodynamics

148355 One mole of an ideal gas at an initial temperature of $T K$ does $6 R$ joules of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of gas will be

1 $(\mathrm{T}+2.4) \mathrm{K}$
2 $(\mathrm{T}-2.4) \mathrm{K}$
3 $(\mathrm{T}+4) \mathrm{K}$
4 $(\mathrm{T}-4) \mathrm{K}$
Thermodynamics

148350 Which of the following statement is wrong?

1 In an adiabatic process $\Delta \mathrm{E}_{\text {int }}=-\mathrm{W}$
2 In a constant volume process $\Delta \mathrm{E}_{\text {int }}=\mathrm{Q}$
3 In a cyclic process $\Delta \mathrm{E}_{\text {int }}=0$
4 For adiabatic expansion of an ideal gas $\mathrm{TV}^{\gamma}=$ constant
Thermodynamics

148351 A sample of an ideal gas undergoes an isothermal process as shown by the curve $A B$ in the PV diagram. If $\Delta \mathbf{Q}, \Delta \mathbf{U}$ and $\Delta \mathrm{W}$ represent the amount of heat absorbed the change in internal energy and the work done respectively, then which of the following statements is correct?

1 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=-\mathrm{ve}$
2 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=0, \Delta \mathrm{W}=+\mathrm{ve}$
3 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=0$
4 $\Delta \mathrm{Q}=+\mathrm{ve}, \Delta \mathrm{U}=+\mathrm{ve}, \Delta \mathrm{W}=+\mathrm{ve}$
Thermodynamics

148354 An ideal gas undergoing adiabatic change has the following pressure-temperature relationship

1 $\mathrm{P}^{\gamma-1} \mathrm{~T}^{\gamma}=$ constant
2 $\mathrm{P}^{\gamma} \mathrm{T}^{\gamma-1}=$ constant
3 $\mathrm{P}^{\gamma} \mathrm{T}^{1-\gamma}=$ constant
4 $\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
Thermodynamics

148355 One mole of an ideal gas at an initial temperature of $T K$ does $6 R$ joules of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of gas will be

1 $(\mathrm{T}+2.4) \mathrm{K}$
2 $(\mathrm{T}-2.4) \mathrm{K}$
3 $(\mathrm{T}+4) \mathrm{K}$
4 $(\mathrm{T}-4) \mathrm{K}$