143388 A copper ball of radius $3.0 \mathrm{~mm}$ falls in an oil tank of viscosity $1 \mathrm{~kg} / \mathrm{m}$-s. Then, the terminal velocity of the copper ball will be (Density of oil $=1.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Density of copper $=9 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.)
143392 A metallic spherical ball of mass $M$ is dropped into a liquid and after some time it reaches a terminal velocity of $v$. If another spherical ball of mass $8 \mathrm{M}$ made of the same metal is dropped into the same liquid, then its terminal velocity will be (assume the spheres to be uniformly dense)
143388 A copper ball of radius $3.0 \mathrm{~mm}$ falls in an oil tank of viscosity $1 \mathrm{~kg} / \mathrm{m}$-s. Then, the terminal velocity of the copper ball will be (Density of oil $=1.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Density of copper $=9 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.)
143392 A metallic spherical ball of mass $M$ is dropped into a liquid and after some time it reaches a terminal velocity of $v$. If another spherical ball of mass $8 \mathrm{M}$ made of the same metal is dropped into the same liquid, then its terminal velocity will be (assume the spheres to be uniformly dense)
143388 A copper ball of radius $3.0 \mathrm{~mm}$ falls in an oil tank of viscosity $1 \mathrm{~kg} / \mathrm{m}$-s. Then, the terminal velocity of the copper ball will be (Density of oil $=1.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Density of copper $=9 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.)
143392 A metallic spherical ball of mass $M$ is dropped into a liquid and after some time it reaches a terminal velocity of $v$. If another spherical ball of mass $8 \mathrm{M}$ made of the same metal is dropped into the same liquid, then its terminal velocity will be (assume the spheres to be uniformly dense)
143388 A copper ball of radius $3.0 \mathrm{~mm}$ falls in an oil tank of viscosity $1 \mathrm{~kg} / \mathrm{m}$-s. Then, the terminal velocity of the copper ball will be (Density of oil $=1.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Density of copper $=9 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.)
143392 A metallic spherical ball of mass $M$ is dropped into a liquid and after some time it reaches a terminal velocity of $v$. If another spherical ball of mass $8 \mathrm{M}$ made of the same metal is dropped into the same liquid, then its terminal velocity will be (assume the spheres to be uniformly dense)
143388 A copper ball of radius $3.0 \mathrm{~mm}$ falls in an oil tank of viscosity $1 \mathrm{~kg} / \mathrm{m}$-s. Then, the terminal velocity of the copper ball will be (Density of oil $=1.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Density of copper $=9 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.)
143392 A metallic spherical ball of mass $M$ is dropped into a liquid and after some time it reaches a terminal velocity of $v$. If another spherical ball of mass $8 \mathrm{M}$ made of the same metal is dropped into the same liquid, then its terminal velocity will be (assume the spheres to be uniformly dense)