143395
The average velocity of water flowing through a pipe of radius $0.5 \mathrm{~cm}$ is $10 \mathrm{~cm} / \mathrm{s}$. The nature of flow is
(Coefficient of viscosity $\eta_{\text {water }}=10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$, density $\rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ )
143395
The average velocity of water flowing through a pipe of radius $0.5 \mathrm{~cm}$ is $10 \mathrm{~cm} / \mathrm{s}$. The nature of flow is
(Coefficient of viscosity $\eta_{\text {water }}=10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$, density $\rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ )
143395
The average velocity of water flowing through a pipe of radius $0.5 \mathrm{~cm}$ is $10 \mathrm{~cm} / \mathrm{s}$. The nature of flow is
(Coefficient of viscosity $\eta_{\text {water }}=10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$, density $\rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ )
143395
The average velocity of water flowing through a pipe of radius $0.5 \mathrm{~cm}$ is $10 \mathrm{~cm} / \mathrm{s}$. The nature of flow is
(Coefficient of viscosity $\eta_{\text {water }}=10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$, density $\rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ )