01. Surface Tension and Surface Energy
Mechanical Properties of Fluids

142834 When a mercury drop of a radius ' $R$ ', breaks into ' $n$ ' droplets of equal size, the radius ' $r$ ' of each droplets is

1 $r=\frac{R}{\sqrt{n}}$
2 $\mathrm{r}=\mathrm{Rn}^{\frac{1}{3}}$
3 $r=\frac{R}{n}$
4 $\mathrm{r}=\frac{\mathrm{R}}{\mathrm{n}^{1 / 3}}$
Mechanical Properties of Fluids

142836 The work done in blowing a soap bubble of radius ' $R$ ' is ' $W_{1}$ ' at room temperature. Now the soap solution is heated. From the heated solution another soap bubble of radius ' $2 R$ ' is blown and the work done is ' $W_{\mathbf{2}}$ ', Then

1 $\mathrm{W}_{2}=0$
2 $\mathrm{W}_{2} \lt 4 \mathrm{~W}_{1}$
3 $\mathrm{W}_{2}=4 \mathrm{~W}_{1}$
4 $\mathrm{W}_{2}=\mathrm{W}_{1}$
Mechanical Properties of Fluids

142837 A fix number of spherical drops of a liquid of radius ' $r$ ' coalesce to form a large drop of radius ' $R$ ' and volume ' $V$ '. If ' $T$ ' is the surface tension then energy

1 $4 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
2 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
3 is neither released nor absorbed
4 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is absorbed
Mechanical Properties of Fluids

142838 A mercury drop of radius ' $R$ ' is divided into 27 droplets of same size. The radius ' $r$ ' of each droplet is

1 $r=\frac{R}{3}$
2 $r=\frac{R}{9}$
3 $r=\frac{R}{27}$
4 $r=3 R$
Mechanical Properties of Fluids

142839 Under isothermal conditions, two soap bubbles of radii ' $r_{1}$ ' and ' $r_{2}$ ' combine to form a single soap bubble of radius ' $R$ '. The surface tension of soap solution is $(\mathrm{P}=$ outside pressure $)$

1 $\mathrm{P}\left(\mathrm{R}^{3}-\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
2 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{R}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{R}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right)$
3 $\mathrm{P}\left(\mathrm{R}^{3}+\mathrm{r}_{1}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
4 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}+\mathrm{R}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{R}^{2}\right)$
Mechanical Properties of Fluids

142834 When a mercury drop of a radius ' $R$ ', breaks into ' $n$ ' droplets of equal size, the radius ' $r$ ' of each droplets is

1 $r=\frac{R}{\sqrt{n}}$
2 $\mathrm{r}=\mathrm{Rn}^{\frac{1}{3}}$
3 $r=\frac{R}{n}$
4 $\mathrm{r}=\frac{\mathrm{R}}{\mathrm{n}^{1 / 3}}$
Mechanical Properties of Fluids

142836 The work done in blowing a soap bubble of radius ' $R$ ' is ' $W_{1}$ ' at room temperature. Now the soap solution is heated. From the heated solution another soap bubble of radius ' $2 R$ ' is blown and the work done is ' $W_{\mathbf{2}}$ ', Then

1 $\mathrm{W}_{2}=0$
2 $\mathrm{W}_{2} \lt 4 \mathrm{~W}_{1}$
3 $\mathrm{W}_{2}=4 \mathrm{~W}_{1}$
4 $\mathrm{W}_{2}=\mathrm{W}_{1}$
Mechanical Properties of Fluids

142837 A fix number of spherical drops of a liquid of radius ' $r$ ' coalesce to form a large drop of radius ' $R$ ' and volume ' $V$ '. If ' $T$ ' is the surface tension then energy

1 $4 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
2 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
3 is neither released nor absorbed
4 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is absorbed
Mechanical Properties of Fluids

142838 A mercury drop of radius ' $R$ ' is divided into 27 droplets of same size. The radius ' $r$ ' of each droplet is

1 $r=\frac{R}{3}$
2 $r=\frac{R}{9}$
3 $r=\frac{R}{27}$
4 $r=3 R$
Mechanical Properties of Fluids

142839 Under isothermal conditions, two soap bubbles of radii ' $r_{1}$ ' and ' $r_{2}$ ' combine to form a single soap bubble of radius ' $R$ '. The surface tension of soap solution is $(\mathrm{P}=$ outside pressure $)$

1 $\mathrm{P}\left(\mathrm{R}^{3}-\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
2 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{R}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{R}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right)$
3 $\mathrm{P}\left(\mathrm{R}^{3}+\mathrm{r}_{1}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
4 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}+\mathrm{R}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{R}^{2}\right)$
Mechanical Properties of Fluids

142834 When a mercury drop of a radius ' $R$ ', breaks into ' $n$ ' droplets of equal size, the radius ' $r$ ' of each droplets is

1 $r=\frac{R}{\sqrt{n}}$
2 $\mathrm{r}=\mathrm{Rn}^{\frac{1}{3}}$
3 $r=\frac{R}{n}$
4 $\mathrm{r}=\frac{\mathrm{R}}{\mathrm{n}^{1 / 3}}$
Mechanical Properties of Fluids

142836 The work done in blowing a soap bubble of radius ' $R$ ' is ' $W_{1}$ ' at room temperature. Now the soap solution is heated. From the heated solution another soap bubble of radius ' $2 R$ ' is blown and the work done is ' $W_{\mathbf{2}}$ ', Then

1 $\mathrm{W}_{2}=0$
2 $\mathrm{W}_{2} \lt 4 \mathrm{~W}_{1}$
3 $\mathrm{W}_{2}=4 \mathrm{~W}_{1}$
4 $\mathrm{W}_{2}=\mathrm{W}_{1}$
Mechanical Properties of Fluids

142837 A fix number of spherical drops of a liquid of radius ' $r$ ' coalesce to form a large drop of radius ' $R$ ' and volume ' $V$ '. If ' $T$ ' is the surface tension then energy

1 $4 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
2 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
3 is neither released nor absorbed
4 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is absorbed
Mechanical Properties of Fluids

142838 A mercury drop of radius ' $R$ ' is divided into 27 droplets of same size. The radius ' $r$ ' of each droplet is

1 $r=\frac{R}{3}$
2 $r=\frac{R}{9}$
3 $r=\frac{R}{27}$
4 $r=3 R$
Mechanical Properties of Fluids

142839 Under isothermal conditions, two soap bubbles of radii ' $r_{1}$ ' and ' $r_{2}$ ' combine to form a single soap bubble of radius ' $R$ '. The surface tension of soap solution is $(\mathrm{P}=$ outside pressure $)$

1 $\mathrm{P}\left(\mathrm{R}^{3}-\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
2 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{R}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{R}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right)$
3 $\mathrm{P}\left(\mathrm{R}^{3}+\mathrm{r}_{1}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
4 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}+\mathrm{R}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{R}^{2}\right)$
Mechanical Properties of Fluids

142834 When a mercury drop of a radius ' $R$ ', breaks into ' $n$ ' droplets of equal size, the radius ' $r$ ' of each droplets is

1 $r=\frac{R}{\sqrt{n}}$
2 $\mathrm{r}=\mathrm{Rn}^{\frac{1}{3}}$
3 $r=\frac{R}{n}$
4 $\mathrm{r}=\frac{\mathrm{R}}{\mathrm{n}^{1 / 3}}$
Mechanical Properties of Fluids

142836 The work done in blowing a soap bubble of radius ' $R$ ' is ' $W_{1}$ ' at room temperature. Now the soap solution is heated. From the heated solution another soap bubble of radius ' $2 R$ ' is blown and the work done is ' $W_{\mathbf{2}}$ ', Then

1 $\mathrm{W}_{2}=0$
2 $\mathrm{W}_{2} \lt 4 \mathrm{~W}_{1}$
3 $\mathrm{W}_{2}=4 \mathrm{~W}_{1}$
4 $\mathrm{W}_{2}=\mathrm{W}_{1}$
Mechanical Properties of Fluids

142837 A fix number of spherical drops of a liquid of radius ' $r$ ' coalesce to form a large drop of radius ' $R$ ' and volume ' $V$ '. If ' $T$ ' is the surface tension then energy

1 $4 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
2 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
3 is neither released nor absorbed
4 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is absorbed
Mechanical Properties of Fluids

142838 A mercury drop of radius ' $R$ ' is divided into 27 droplets of same size. The radius ' $r$ ' of each droplet is

1 $r=\frac{R}{3}$
2 $r=\frac{R}{9}$
3 $r=\frac{R}{27}$
4 $r=3 R$
Mechanical Properties of Fluids

142839 Under isothermal conditions, two soap bubbles of radii ' $r_{1}$ ' and ' $r_{2}$ ' combine to form a single soap bubble of radius ' $R$ '. The surface tension of soap solution is $(\mathrm{P}=$ outside pressure $)$

1 $\mathrm{P}\left(\mathrm{R}^{3}-\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
2 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{R}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{R}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right)$
3 $\mathrm{P}\left(\mathrm{R}^{3}+\mathrm{r}_{1}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
4 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}+\mathrm{R}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{R}^{2}\right)$
Mechanical Properties of Fluids

142834 When a mercury drop of a radius ' $R$ ', breaks into ' $n$ ' droplets of equal size, the radius ' $r$ ' of each droplets is

1 $r=\frac{R}{\sqrt{n}}$
2 $\mathrm{r}=\mathrm{Rn}^{\frac{1}{3}}$
3 $r=\frac{R}{n}$
4 $\mathrm{r}=\frac{\mathrm{R}}{\mathrm{n}^{1 / 3}}$
Mechanical Properties of Fluids

142836 The work done in blowing a soap bubble of radius ' $R$ ' is ' $W_{1}$ ' at room temperature. Now the soap solution is heated. From the heated solution another soap bubble of radius ' $2 R$ ' is blown and the work done is ' $W_{\mathbf{2}}$ ', Then

1 $\mathrm{W}_{2}=0$
2 $\mathrm{W}_{2} \lt 4 \mathrm{~W}_{1}$
3 $\mathrm{W}_{2}=4 \mathrm{~W}_{1}$
4 $\mathrm{W}_{2}=\mathrm{W}_{1}$
Mechanical Properties of Fluids

142837 A fix number of spherical drops of a liquid of radius ' $r$ ' coalesce to form a large drop of radius ' $R$ ' and volume ' $V$ '. If ' $T$ ' is the surface tension then energy

1 $4 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
2 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is released
3 is neither released nor absorbed
4 $3 \mathrm{VT}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$ is absorbed
Mechanical Properties of Fluids

142838 A mercury drop of radius ' $R$ ' is divided into 27 droplets of same size. The radius ' $r$ ' of each droplet is

1 $r=\frac{R}{3}$
2 $r=\frac{R}{9}$
3 $r=\frac{R}{27}$
4 $r=3 R$
Mechanical Properties of Fluids

142839 Under isothermal conditions, two soap bubbles of radii ' $r_{1}$ ' and ' $r_{2}$ ' combine to form a single soap bubble of radius ' $R$ '. The surface tension of soap solution is $(\mathrm{P}=$ outside pressure $)$

1 $\mathrm{P}\left(\mathrm{R}^{3}-\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
2 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{R}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{R}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right)$
3 $\mathrm{P}\left(\mathrm{R}^{3}+\mathrm{r}_{1}^{3}+\mathrm{r}_{2}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{R}^{2}\right)$
4 $\mathrm{P}\left(\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}+\mathrm{R}^{3}\right) / 4\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{R}^{2}\right)$