01. Surface Tension and Surface Energy
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

142840 If ' $T$ ' is the surface tension of a soap solution, then the work done in blowing a soap bubble from diameter ' $D$ ' to diameter ' $2 D$ ' is

1 $6 \pi \mathrm{TD}^{2}$
2 $8 \pi \mathrm{TD}^{2}$
3 $2 \pi \mathrm{TD}^{2}$
4 $4 \pi \mathrm{TD}^{2}$
Mechanical Properties of Fluids

142842 A metal coin of thickness ' $d$ ' and density ' $\rho$ ' is floating on water of surface tension ' $T$ '. The radius of the coin is $g=$ acceleration due to gravity

1 $\frac{4 \mathrm{~T}}{3 \rho g \mathrm{~d}}$
2 $\frac{3 \mathrm{~T}}{4 \rho g \mathrm{~d}}$
3 $\frac{2 \mathrm{~T}}{\rho g \mathrm{~d}}$
4 $\frac{\mathrm{T}}{\rho \mathrm{gd}}$
Mechanical Properties of Fluids

142843 A water drop of radius ' $R$ ' splits into ' $n$ ' smaller drops, each of radius ' $r$ '. The work done in the process is, $(T=$ surface tension of water)

1 $8 \pi R^{3} T\left(1-\frac{r}{R}\right)$
2 $8 \pi \mathrm{R}^{3} \mathrm{~T}\left(1+\frac{\mathrm{r}}{\mathrm{R}}\right)$
3 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right)$
4 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$
Mechanical Properties of Fluids

142845 The work done in splitting a water drop of radius $R$ into 64 droplets is
( $T=$ surface tension of water)

1 $6 \pi \mathrm{T} \mathrm{R}^{2}$
2 $4 \pi \mathrm{T} \mathrm{R}^{2}$
3 $12 \pi \mathrm{TR}^{2}$
4 $8 \pi \mathrm{T} \mathrm{R}^{2}$
Mechanical Properties of Fluids

142840 If ' $T$ ' is the surface tension of a soap solution, then the work done in blowing a soap bubble from diameter ' $D$ ' to diameter ' $2 D$ ' is

1 $6 \pi \mathrm{TD}^{2}$
2 $8 \pi \mathrm{TD}^{2}$
3 $2 \pi \mathrm{TD}^{2}$
4 $4 \pi \mathrm{TD}^{2}$
Mechanical Properties of Fluids

142842 A metal coin of thickness ' $d$ ' and density ' $\rho$ ' is floating on water of surface tension ' $T$ '. The radius of the coin is $g=$ acceleration due to gravity

1 $\frac{4 \mathrm{~T}}{3 \rho g \mathrm{~d}}$
2 $\frac{3 \mathrm{~T}}{4 \rho g \mathrm{~d}}$
3 $\frac{2 \mathrm{~T}}{\rho g \mathrm{~d}}$
4 $\frac{\mathrm{T}}{\rho \mathrm{gd}}$
Mechanical Properties of Fluids

142843 A water drop of radius ' $R$ ' splits into ' $n$ ' smaller drops, each of radius ' $r$ '. The work done in the process is, $(T=$ surface tension of water)

1 $8 \pi R^{3} T\left(1-\frac{r}{R}\right)$
2 $8 \pi \mathrm{R}^{3} \mathrm{~T}\left(1+\frac{\mathrm{r}}{\mathrm{R}}\right)$
3 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right)$
4 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$
Mechanical Properties of Fluids

142845 The work done in splitting a water drop of radius $R$ into 64 droplets is
( $T=$ surface tension of water)

1 $6 \pi \mathrm{T} \mathrm{R}^{2}$
2 $4 \pi \mathrm{T} \mathrm{R}^{2}$
3 $12 \pi \mathrm{TR}^{2}$
4 $8 \pi \mathrm{T} \mathrm{R}^{2}$
Mechanical Properties of Fluids

142840 If ' $T$ ' is the surface tension of a soap solution, then the work done in blowing a soap bubble from diameter ' $D$ ' to diameter ' $2 D$ ' is

1 $6 \pi \mathrm{TD}^{2}$
2 $8 \pi \mathrm{TD}^{2}$
3 $2 \pi \mathrm{TD}^{2}$
4 $4 \pi \mathrm{TD}^{2}$
Mechanical Properties of Fluids

142842 A metal coin of thickness ' $d$ ' and density ' $\rho$ ' is floating on water of surface tension ' $T$ '. The radius of the coin is $g=$ acceleration due to gravity

1 $\frac{4 \mathrm{~T}}{3 \rho g \mathrm{~d}}$
2 $\frac{3 \mathrm{~T}}{4 \rho g \mathrm{~d}}$
3 $\frac{2 \mathrm{~T}}{\rho g \mathrm{~d}}$
4 $\frac{\mathrm{T}}{\rho \mathrm{gd}}$
Mechanical Properties of Fluids

142843 A water drop of radius ' $R$ ' splits into ' $n$ ' smaller drops, each of radius ' $r$ '. The work done in the process is, $(T=$ surface tension of water)

1 $8 \pi R^{3} T\left(1-\frac{r}{R}\right)$
2 $8 \pi \mathrm{R}^{3} \mathrm{~T}\left(1+\frac{\mathrm{r}}{\mathrm{R}}\right)$
3 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right)$
4 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$
Mechanical Properties of Fluids

142845 The work done in splitting a water drop of radius $R$ into 64 droplets is
( $T=$ surface tension of water)

1 $6 \pi \mathrm{T} \mathrm{R}^{2}$
2 $4 \pi \mathrm{T} \mathrm{R}^{2}$
3 $12 \pi \mathrm{TR}^{2}$
4 $8 \pi \mathrm{T} \mathrm{R}^{2}$
Mechanical Properties of Fluids

142840 If ' $T$ ' is the surface tension of a soap solution, then the work done in blowing a soap bubble from diameter ' $D$ ' to diameter ' $2 D$ ' is

1 $6 \pi \mathrm{TD}^{2}$
2 $8 \pi \mathrm{TD}^{2}$
3 $2 \pi \mathrm{TD}^{2}$
4 $4 \pi \mathrm{TD}^{2}$
Mechanical Properties of Fluids

142842 A metal coin of thickness ' $d$ ' and density ' $\rho$ ' is floating on water of surface tension ' $T$ '. The radius of the coin is $g=$ acceleration due to gravity

1 $\frac{4 \mathrm{~T}}{3 \rho g \mathrm{~d}}$
2 $\frac{3 \mathrm{~T}}{4 \rho g \mathrm{~d}}$
3 $\frac{2 \mathrm{~T}}{\rho g \mathrm{~d}}$
4 $\frac{\mathrm{T}}{\rho \mathrm{gd}}$
Mechanical Properties of Fluids

142843 A water drop of radius ' $R$ ' splits into ' $n$ ' smaller drops, each of radius ' $r$ '. The work done in the process is, $(T=$ surface tension of water)

1 $8 \pi R^{3} T\left(1-\frac{r}{R}\right)$
2 $8 \pi \mathrm{R}^{3} \mathrm{~T}\left(1+\frac{\mathrm{r}}{\mathrm{R}}\right)$
3 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right)$
4 $4 \pi \mathrm{R}^{3} \mathrm{~T}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$
Mechanical Properties of Fluids

142845 The work done in splitting a water drop of radius $R$ into 64 droplets is
( $T=$ surface tension of water)

1 $6 \pi \mathrm{T} \mathrm{R}^{2}$
2 $4 \pi \mathrm{T} \mathrm{R}^{2}$
3 $12 \pi \mathrm{TR}^{2}$
4 $8 \pi \mathrm{T} \mathrm{R}^{2}$