01. Surface Tension and Surface Energy
Mechanical Properties of Fluids

142787 A spherical body of density $\rho$ is floating half immersed in a liquid of density $d$. If $\sigma$ is the surface tension of the liquid, then the diameter of the body is

1 $\sqrt{\frac{3 \sigma}{g(2 \rho-d)}}$
2 $\sqrt{\frac{6 \sigma}{g(2 \rho-d)}}$
3 $\sqrt{\frac{4 \sigma}{g(2 \rho-d)}}$
4 $\sqrt{\frac{12 \sigma}{g(2 \rho-d)}}$
Mechanical Properties of Fluids

142788 Two circular plates of radius $5 \mathrm{~cm}$ each, have a $0.01 \mathrm{~mm}$ thick water film between them. Then what will be the force required to separate these plate $($ S.T. of water $=\mathbf{7 3} \mathrm{dyne} / \mathrm{cm})$ ?

1 $125 \mathrm{~N}$
2 $95 \mathrm{~N}$
3 $115 \mathrm{~N}$
4 $105 \mathrm{~N}$
Mechanical Properties of Fluids

142789 If the masses of all molecules of a gas are halved and their speeds doubled, then the ratio of initial and final pressure will be

1 $1: 4$
2 $4: 1$
3 $2: 1$
4 $1: 2$
Mechanical Properties of Fluids

142790 Drop of liquid of density $\rho$ is floating half immersed in a liquid of density $\rho_{0}$. If surface tension of liquid is $\mathrm{s}$, the radius of drop is

1 $\sqrt{\frac{3 s}{g\left(\rho-\rho_{0}\right)}}$
2 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(2 \rho-\rho_{0}\right)}}$
3 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(3 \rho-\rho_{0}\right)}}$
4 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(4 \rho-\rho_{0}\right)}}$
Mechanical Properties of Fluids

142787 A spherical body of density $\rho$ is floating half immersed in a liquid of density $d$. If $\sigma$ is the surface tension of the liquid, then the diameter of the body is

1 $\sqrt{\frac{3 \sigma}{g(2 \rho-d)}}$
2 $\sqrt{\frac{6 \sigma}{g(2 \rho-d)}}$
3 $\sqrt{\frac{4 \sigma}{g(2 \rho-d)}}$
4 $\sqrt{\frac{12 \sigma}{g(2 \rho-d)}}$
Mechanical Properties of Fluids

142788 Two circular plates of radius $5 \mathrm{~cm}$ each, have a $0.01 \mathrm{~mm}$ thick water film between them. Then what will be the force required to separate these plate $($ S.T. of water $=\mathbf{7 3} \mathrm{dyne} / \mathrm{cm})$ ?

1 $125 \mathrm{~N}$
2 $95 \mathrm{~N}$
3 $115 \mathrm{~N}$
4 $105 \mathrm{~N}$
Mechanical Properties of Fluids

142789 If the masses of all molecules of a gas are halved and their speeds doubled, then the ratio of initial and final pressure will be

1 $1: 4$
2 $4: 1$
3 $2: 1$
4 $1: 2$
Mechanical Properties of Fluids

142790 Drop of liquid of density $\rho$ is floating half immersed in a liquid of density $\rho_{0}$. If surface tension of liquid is $\mathrm{s}$, the radius of drop is

1 $\sqrt{\frac{3 s}{g\left(\rho-\rho_{0}\right)}}$
2 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(2 \rho-\rho_{0}\right)}}$
3 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(3 \rho-\rho_{0}\right)}}$
4 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(4 \rho-\rho_{0}\right)}}$
Mechanical Properties of Fluids

142787 A spherical body of density $\rho$ is floating half immersed in a liquid of density $d$. If $\sigma$ is the surface tension of the liquid, then the diameter of the body is

1 $\sqrt{\frac{3 \sigma}{g(2 \rho-d)}}$
2 $\sqrt{\frac{6 \sigma}{g(2 \rho-d)}}$
3 $\sqrt{\frac{4 \sigma}{g(2 \rho-d)}}$
4 $\sqrt{\frac{12 \sigma}{g(2 \rho-d)}}$
Mechanical Properties of Fluids

142788 Two circular plates of radius $5 \mathrm{~cm}$ each, have a $0.01 \mathrm{~mm}$ thick water film between them. Then what will be the force required to separate these plate $($ S.T. of water $=\mathbf{7 3} \mathrm{dyne} / \mathrm{cm})$ ?

1 $125 \mathrm{~N}$
2 $95 \mathrm{~N}$
3 $115 \mathrm{~N}$
4 $105 \mathrm{~N}$
Mechanical Properties of Fluids

142789 If the masses of all molecules of a gas are halved and their speeds doubled, then the ratio of initial and final pressure will be

1 $1: 4$
2 $4: 1$
3 $2: 1$
4 $1: 2$
Mechanical Properties of Fluids

142790 Drop of liquid of density $\rho$ is floating half immersed in a liquid of density $\rho_{0}$. If surface tension of liquid is $\mathrm{s}$, the radius of drop is

1 $\sqrt{\frac{3 s}{g\left(\rho-\rho_{0}\right)}}$
2 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(2 \rho-\rho_{0}\right)}}$
3 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(3 \rho-\rho_{0}\right)}}$
4 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(4 \rho-\rho_{0}\right)}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

142787 A spherical body of density $\rho$ is floating half immersed in a liquid of density $d$. If $\sigma$ is the surface tension of the liquid, then the diameter of the body is

1 $\sqrt{\frac{3 \sigma}{g(2 \rho-d)}}$
2 $\sqrt{\frac{6 \sigma}{g(2 \rho-d)}}$
3 $\sqrt{\frac{4 \sigma}{g(2 \rho-d)}}$
4 $\sqrt{\frac{12 \sigma}{g(2 \rho-d)}}$
Mechanical Properties of Fluids

142788 Two circular plates of radius $5 \mathrm{~cm}$ each, have a $0.01 \mathrm{~mm}$ thick water film between them. Then what will be the force required to separate these plate $($ S.T. of water $=\mathbf{7 3} \mathrm{dyne} / \mathrm{cm})$ ?

1 $125 \mathrm{~N}$
2 $95 \mathrm{~N}$
3 $115 \mathrm{~N}$
4 $105 \mathrm{~N}$
Mechanical Properties of Fluids

142789 If the masses of all molecules of a gas are halved and their speeds doubled, then the ratio of initial and final pressure will be

1 $1: 4$
2 $4: 1$
3 $2: 1$
4 $1: 2$
Mechanical Properties of Fluids

142790 Drop of liquid of density $\rho$ is floating half immersed in a liquid of density $\rho_{0}$. If surface tension of liquid is $\mathrm{s}$, the radius of drop is

1 $\sqrt{\frac{3 s}{g\left(\rho-\rho_{0}\right)}}$
2 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(2 \rho-\rho_{0}\right)}}$
3 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(3 \rho-\rho_{0}\right)}}$
4 $\sqrt{\frac{3 \mathrm{~s}}{\mathrm{~g}\left(4 \rho-\rho_{0}\right)}}$