03. Stored Energy
Mechanical Properties of Solids

141137 If $S$ is stress and $Y$ is Young's modulus of a material of wire, then energy stored in the wire per unit volume is:

1 $2 \mathrm{~S}^{2} \mathrm{Y}$
2 $\frac{\mathrm{S}}{2 \mathrm{Y}}$
3 $\frac{2 \mathrm{Y}}{\mathrm{S}^{2}}$
4 $\frac{S^{2}}{2 Y}$
Mechanical Properties of Solids

141138 The breaking force for a wire of diameter $D$ of a material if $F$. The breaking force for a wire of the same material of radius $D$ is

1 $\mathrm{F}$
2 $2 \mathrm{~F}$
3 $\frac{F}{4}$
4 $4 \mathrm{~F}$
Mechanical Properties of Solids

141139 If in a wire of Young's modulus $Y$, longitudinal strain $X$ is produced then the potential energy stored in its unit volume will be:

1 $0.5 \mathrm{YX}^{2}$
2 $0.5 \mathrm{Y}^{2} \mathrm{X}$
3 $2 \mathrm{YX}^{2}$
4 $\mathrm{YX}^{2}$
Mechanical Properties of Solids

141145 A rod elongates by $l$ when a body of mass $M$ is suspended from it. The work done is

1 $\mathrm{Mgl}$
2 $\frac{1}{2} \mathrm{Mg} l$
3 $2 \mathrm{Mg} l$
4 Zero
Mechanical Properties of Solids

141137 If $S$ is stress and $Y$ is Young's modulus of a material of wire, then energy stored in the wire per unit volume is:

1 $2 \mathrm{~S}^{2} \mathrm{Y}$
2 $\frac{\mathrm{S}}{2 \mathrm{Y}}$
3 $\frac{2 \mathrm{Y}}{\mathrm{S}^{2}}$
4 $\frac{S^{2}}{2 Y}$
Mechanical Properties of Solids

141138 The breaking force for a wire of diameter $D$ of a material if $F$. The breaking force for a wire of the same material of radius $D$ is

1 $\mathrm{F}$
2 $2 \mathrm{~F}$
3 $\frac{F}{4}$
4 $4 \mathrm{~F}$
Mechanical Properties of Solids

141139 If in a wire of Young's modulus $Y$, longitudinal strain $X$ is produced then the potential energy stored in its unit volume will be:

1 $0.5 \mathrm{YX}^{2}$
2 $0.5 \mathrm{Y}^{2} \mathrm{X}$
3 $2 \mathrm{YX}^{2}$
4 $\mathrm{YX}^{2}$
Mechanical Properties of Solids

141145 A rod elongates by $l$ when a body of mass $M$ is suspended from it. The work done is

1 $\mathrm{Mgl}$
2 $\frac{1}{2} \mathrm{Mg} l$
3 $2 \mathrm{Mg} l$
4 Zero
Mechanical Properties of Solids

141137 If $S$ is stress and $Y$ is Young's modulus of a material of wire, then energy stored in the wire per unit volume is:

1 $2 \mathrm{~S}^{2} \mathrm{Y}$
2 $\frac{\mathrm{S}}{2 \mathrm{Y}}$
3 $\frac{2 \mathrm{Y}}{\mathrm{S}^{2}}$
4 $\frac{S^{2}}{2 Y}$
Mechanical Properties of Solids

141138 The breaking force for a wire of diameter $D$ of a material if $F$. The breaking force for a wire of the same material of radius $D$ is

1 $\mathrm{F}$
2 $2 \mathrm{~F}$
3 $\frac{F}{4}$
4 $4 \mathrm{~F}$
Mechanical Properties of Solids

141139 If in a wire of Young's modulus $Y$, longitudinal strain $X$ is produced then the potential energy stored in its unit volume will be:

1 $0.5 \mathrm{YX}^{2}$
2 $0.5 \mathrm{Y}^{2} \mathrm{X}$
3 $2 \mathrm{YX}^{2}$
4 $\mathrm{YX}^{2}$
Mechanical Properties of Solids

141145 A rod elongates by $l$ when a body of mass $M$ is suspended from it. The work done is

1 $\mathrm{Mgl}$
2 $\frac{1}{2} \mathrm{Mg} l$
3 $2 \mathrm{Mg} l$
4 Zero
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Solids

141137 If $S$ is stress and $Y$ is Young's modulus of a material of wire, then energy stored in the wire per unit volume is:

1 $2 \mathrm{~S}^{2} \mathrm{Y}$
2 $\frac{\mathrm{S}}{2 \mathrm{Y}}$
3 $\frac{2 \mathrm{Y}}{\mathrm{S}^{2}}$
4 $\frac{S^{2}}{2 Y}$
Mechanical Properties of Solids

141138 The breaking force for a wire of diameter $D$ of a material if $F$. The breaking force for a wire of the same material of radius $D$ is

1 $\mathrm{F}$
2 $2 \mathrm{~F}$
3 $\frac{F}{4}$
4 $4 \mathrm{~F}$
Mechanical Properties of Solids

141139 If in a wire of Young's modulus $Y$, longitudinal strain $X$ is produced then the potential energy stored in its unit volume will be:

1 $0.5 \mathrm{YX}^{2}$
2 $0.5 \mathrm{Y}^{2} \mathrm{X}$
3 $2 \mathrm{YX}^{2}$
4 $\mathrm{YX}^{2}$
Mechanical Properties of Solids

141145 A rod elongates by $l$ when a body of mass $M$ is suspended from it. The work done is

1 $\mathrm{Mgl}$
2 $\frac{1}{2} \mathrm{Mg} l$
3 $2 \mathrm{Mg} l$
4 Zero