03. Stored Energy
Mechanical Properties of Solids

141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )

1 $75 \mathrm{~mJ}$
2 $75 \mathrm{~J}$
3 $75 \mu \mathrm{J}$
4 $0.75 \mathrm{~mJ}$
Mechanical Properties of Solids

141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $9 \times 10^{-3} \mathrm{~J}$
2 $12 \times 10^{-3} \mathrm{~J}$
3 $14 \times 10^{-3} \mathrm{~J}$
4 $16 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Solids

141135 Consider a metallic wire of length $10 \mathrm{~m}$. An external force applied results in an elongation of $5 \mathrm{~mm}$. What is the potential energy stored per unit volume
[Young's modulus of wire $Y=16 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ ]

1 $2.00 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
2 $2.58 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
3 $2.12 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
4 $2.72 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
Mechanical Properties of Solids

141136 A wire suspended vertically from one of its ends is stretched by attaching a weight of $200 \mathrm{~N}$ to the lower end. The weight stretches the wire by $1 \mathrm{~mm}$. Then, the elastic energy stored in the wire is

1 $0.2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $20 \mathrm{~J}$
4 $0.1 \mathrm{~J}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Solids

141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )

1 $75 \mathrm{~mJ}$
2 $75 \mathrm{~J}$
3 $75 \mu \mathrm{J}$
4 $0.75 \mathrm{~mJ}$
Mechanical Properties of Solids

141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $9 \times 10^{-3} \mathrm{~J}$
2 $12 \times 10^{-3} \mathrm{~J}$
3 $14 \times 10^{-3} \mathrm{~J}$
4 $16 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Solids

141135 Consider a metallic wire of length $10 \mathrm{~m}$. An external force applied results in an elongation of $5 \mathrm{~mm}$. What is the potential energy stored per unit volume
[Young's modulus of wire $Y=16 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ ]

1 $2.00 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
2 $2.58 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
3 $2.12 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
4 $2.72 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
Mechanical Properties of Solids

141136 A wire suspended vertically from one of its ends is stretched by attaching a weight of $200 \mathrm{~N}$ to the lower end. The weight stretches the wire by $1 \mathrm{~mm}$. Then, the elastic energy stored in the wire is

1 $0.2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $20 \mathrm{~J}$
4 $0.1 \mathrm{~J}$
Mechanical Properties of Solids

141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )

1 $75 \mathrm{~mJ}$
2 $75 \mathrm{~J}$
3 $75 \mu \mathrm{J}$
4 $0.75 \mathrm{~mJ}$
Mechanical Properties of Solids

141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $9 \times 10^{-3} \mathrm{~J}$
2 $12 \times 10^{-3} \mathrm{~J}$
3 $14 \times 10^{-3} \mathrm{~J}$
4 $16 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Solids

141135 Consider a metallic wire of length $10 \mathrm{~m}$. An external force applied results in an elongation of $5 \mathrm{~mm}$. What is the potential energy stored per unit volume
[Young's modulus of wire $Y=16 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ ]

1 $2.00 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
2 $2.58 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
3 $2.12 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
4 $2.72 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
Mechanical Properties of Solids

141136 A wire suspended vertically from one of its ends is stretched by attaching a weight of $200 \mathrm{~N}$ to the lower end. The weight stretches the wire by $1 \mathrm{~mm}$. Then, the elastic energy stored in the wire is

1 $0.2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $20 \mathrm{~J}$
4 $0.1 \mathrm{~J}$
Mechanical Properties of Solids

141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )

1 $75 \mathrm{~mJ}$
2 $75 \mathrm{~J}$
3 $75 \mu \mathrm{J}$
4 $0.75 \mathrm{~mJ}$
Mechanical Properties of Solids

141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $9 \times 10^{-3} \mathrm{~J}$
2 $12 \times 10^{-3} \mathrm{~J}$
3 $14 \times 10^{-3} \mathrm{~J}$
4 $16 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Solids

141135 Consider a metallic wire of length $10 \mathrm{~m}$. An external force applied results in an elongation of $5 \mathrm{~mm}$. What is the potential energy stored per unit volume
[Young's modulus of wire $Y=16 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ ]

1 $2.00 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
2 $2.58 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
3 $2.12 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
4 $2.72 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$
Mechanical Properties of Solids

141136 A wire suspended vertically from one of its ends is stretched by attaching a weight of $200 \mathrm{~N}$ to the lower end. The weight stretches the wire by $1 \mathrm{~mm}$. Then, the elastic energy stored in the wire is

1 $0.2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $20 \mathrm{~J}$
4 $0.1 \mathrm{~J}$